
D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 1 of 61

ARTIST

FP7 - 317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

Deliverable D6.4.2

ARTIST Integrated Architecture

Editor(s): Jesús Gorroñogoitia

Responsible Partner: ATOS

Status-Version: V1.0

Date: 30/06/2015

Distribution level (CO, PU): PU

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 2 of 61

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable: ARTIST Integrated Architecture

Due Date of Delivery to the EC: 30/06/2015

Work package responsible for
the Deliverable:

WP6 ς Modernization blueprint, methodology and
integration

Editor(s):
Jesús Gorroñogoitia (ATOS)

Contributor(s): ATOS

Reviewer(s): Hugo Brunelière (INRIA)

Approved by: All Partners

Recommended/mandatory
readers:

Mandatory: WP5-WP12

Abstract: This document provides the specification of the
interoperable ARTIST architecture at month 33,
the final specification1 of the entire ARTIST suiteΩǎ
architecture aiming to ensure a smooth
interoperable specification at conceptual,
functional and technical level of the different
building blocks, i.e. tools, which constitute the
ARTIST suite.

Keyword List: Methodology, Architecture, Interoperability,
Integration

Licensing information: This work is licensed under Creative Commons
Attribution- ShareAlike 3.0 Unported (CC BY-SA
3.0)

http://creativecommons.org/licenses/by-sa/3.0/

1
 Final specification will be released on M33

http://creativecommons.org/licenses/by-sa/3.0/

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 3 of 61

Document Description

Document Revision History

Version Date

Modifications Introduced

Modification Reason Modified by

v0.1 25/05/15
Final major review of ARTIST
architecture. Revision of content from
WD6.4b

ATOS

V0.8 15/06/15 Peer-Review version ATOS

V0.9 18/06/15
Amendments and improvements
attending peer-review
recommendations

INRIA, ATOS

V1.0 30/06/15 Final version ATOS

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 4 of 61

Table of Contents

Table of Contents .. 4

Table of Figures ... 5

Table of Tables ... 6

Terms and abbreviations ... 6

Executive Summary ... 8

1 Introduction ... 11

2 Overview of the ARTIST Integrated Conceptual Architecture UPDATE 12

2.1 Tools for Migration Feasibility Assessment ... 14

2.2 Tools for ARTIST Methodology customisation .. 14

2.3 Tools for Target Environment Specification .. 14

2.4 Tools for Application Discovery and Understanding ... 15

2.5 Tools for Modernization .. 16

2.6 Tools for Validation and Certification.. 17

2.7 ARTIST Repository ... 17

3 Detailed ARTIST integrated architecture ... 18

3.1 Tools for Migration Feasibility Assessment UPDATE .. 18

3.1.1 Structural description .. 18

3.1.2 Behavioral description ... 20

3.2 Tools for ARTIST Methodology customisation .. 22

3.2.1 Structural description .. 23

3.2.2 Behavioral description ... 23

3.3 Tools for Target Environment Specification UPDATE ... 24

3.3.1 Structural description .. 24

3.3.2 Behavioral description ... 25

3.4 Tools for Application Discovery and Understanding UPDATE 26

3.4.1 Structural description .. 26

3.4.2 Behavioral description ... 27

3.5 Tools for Modernization UPDATE ... 28

3.5.1 Structural description .. 28

3.5.2 Behavioral description ... 31

3.6 Tools for Verification and Certification UPDATE .. 34

3.6.1 Structural description .. 34

3.6.2 Behavioral description ... 35

3.7 ARTIST Repository UPDATE .. 37

4 ARTIST suite ... 41

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 5 of 61

4.1 ARTIST suite interoperability UPDATE .. 41

4.2 ARTIST suite deployment UPDATE ... 45

5 Conclusions UPDATE ... 48

6 References ... 50

7 APPENDIX A: Exposed Interfaces UPDATE .. 52

7.1 Tools for Migration Feasibility Assessment ... 52

7.2 Tools for ARTIST Methodology customisation .. 54

7.3 Tools for Target Environment Specification .. 54

7.4 Tools for Application Discovery and Understanding ... 56

7.5 Tools for Modernization .. 57

7.6 Tools for Verification and Certification ... 60

Table of Figures

FIGURE 1 : OVERALL ARTIST ARCHITECTURE .. 13
FIGURE 2 MIGRATION FEASIBILITY ASSESSMENT PACKAGE .. 19
FIGURE 3 MIGRATION FEASIBILITY ASSESSMENT PROCESS ... 21
FIGURE 4 EXTERNAL DEPENDENCIES ON THE MIGRATION FEASIBILITY ASSESSMENT 22
FIGURE 5 METHODOLOGY CUSTOMISATION PACKAGE .. 23
FIGURE 6 METHODOLOGY PERSONALIZATION PROCESS ... 24
FIGURE 7 TARGET ENVIRONMENT SPECIFICATION PACKAGE ... 25
FIGURE 8 TARGET ENVIRONMENT SPECIFICATION PROCESS .. 25
FIGURE 9 APPLICATION DISCOVERY AND UNDERSTANDING PACKAGE ... 26
FIGURE 10 APPLICATION DISCOVERY AND UNDERSTANDING PROCESS ... 28
FIGURE 11 MODERNIZATION PACKAGE .. 30
FIGURE 12 MODERNIZATION PROCESS ... 33
FIGURE 13 VERIFICATION AND CERTIFICATION PACKAGE ... 34
FIGURE 14 TEST-CASE BASED BEHAVIOURAL EQUIVALENCE VERIFICATION PROCESS 36
FIGURE 15 END-USER BASED BEHAVIOURAL EQUIVALENCE VERIFICATION PROCESS 36
FIGURE 16 NON-FUNCTIONAL REQUIREMENT VERIFICATION PROCESS ... 37
FIGURE 17 ARTIST REPOSITORY PACKAGE ... 38
FIGURE 18 ARTIST REPOSITORY PACKAGE ... 39
FIGURE 19 ARTIST SUITE ARCHITECTURE: INTEROPERABILITY .. 41
FIGURE 20 ARTIST SUITE: TOOL DEPLOYMENT ... 46
FIGURE 21 MIGRATION FEASIBILITY ASSESSMENT TOOLS AND INTERFACES ... 53
FIGURE 22 INTERFACES USED BY METHODOLOGY CUSTOMISATION PACKAGE .. 54
FIGURE 23 TARGET ENVIRONMENT SPECIFICATION INTERFACES .. 55
FIGURE 24 APPLICATION DISCOVERY AND UNDERSTANDING INTERFACES .. 56
FIGURE 25 MODERNIZATION INTERFACES .. 58
FIGURE 26 VERIFICATION AND CERTIFICATION PACKAGE INTERFACES .. 61

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 6 of 61

Table of Tables

TABLE 1. ARTIST REUSABLE ARTEFACTS ... 39

Terms and abbreviations

API Application Programming Interface

ATL Atlas Transformation Language

BFT Business Feasibility Tool

BTT Benchmarking Test Tool

CAML Cloud Application Modelling Language

CGT Code Generation Toolbox

COT Cloudification/Optimization Toolbox

CPU Central Processing Unit

DT Deployment Tool

EA Sparx Enterprise Architect

EUbBET End-user based behavioural Equivalence Tool

GME Goal Modelling Editor

GPU Graphics Processing Unit

IDE Integrated Development Environment

JVM Java Virtual Machine

KPI Key Performance Indicator

M2M Model-to-Model

M2MT Model-to-Model Transformation

M2MTT Model-to-Model Transformation Tool

M2T Model-to-Text

M2TT Model-to-Text Transformation

M2TTT Model-to-Text Transformation Tool

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 7 of 61

MAT Maturity Assessment Tool

MDE Model Driven Engineering

MDFE Model Driven Forward Engineering

MDRE Model Driven Reverse Engineering

MDT Model Discovery Toolbox

MPT Methodology Process Tool

MUT Model Understanding Toolbox

NF Non Functional

NFRVT Non-Functional Requirement Verification Tool

OSS Open Source Software

PDM Platform Domain Model

PIM Platform Independent Model

PSCT Performance Stereotype Classification Tool

PSM Platform Specific Model

PT Profiling Tool

RCP Rich Client Platform

ROT Return of investment

RTT Reusability Trace Tool

SaaS Software as a Service

SbSp Service based Software providers

TCbBET Test-case based Behavioural Equivalence Tool

TFT Technical Feasibility Tool

UML Unified Modelling Language

URI Uniform Resource Identifier

UUID Universal Unique Identifier

XMI XML Metadata Interchange

XML Extensible Markup Language

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 8 of 61

Executive Summary

This document provides the specification of the interoperable ARTIST architecture, at M332,

the final specification of the architecture of the entire ARTIST suite. This architecture was

aiming to ensure a smooth interoperability at conceptual, functional and technical level of

its different building blocks, i.e. tools. The ARTIST suite enables users to realize the ARTIST

methodology during the migration of legacy applications to the Cloud, by providing a

comprehensive set of tools, named as ARTIST suite, which assist users to complete the

methodology tasks.

ARTIST, as an IP project, comprises diverse technical and scientific activities that contribute

altogether to the joint materialisation of ARTIST techniques and tools. However, a successful

instantiation of these techniques and tools requires an integrated architecture, described in

this document, which aims to: a) converge these different conceptual and technical

approaches and b) detect and fix potential interoperability misalignments that may occur

during the phases of tool design and development. In this way, we can avoid potential

technical flaws which, if were detected on late development phases, could be hardly fixed,

therefore compromising the fulfilment of the project objectives.

In this scope, the global and interoperable architecture described in the document aims to:

¶ provide an overall and comprehensive conceptual and functional description of the

ARTIST suite, checking the complete coverage of the methodology technical tasks3,

¶ ensure a smooth conceptual and technical interoperability among ARTIST tools that

guarantees a correct instantiation of the methodology tasks,

¶ describe the tools interoperability needs in terms of work products consumed and

provided by each tool, as well as other interoperability aspects such as the required

and exposed interfaces, protocols, formats, etc.,

¶ provide a technical approach that fulfils the interoperability needs collected in

above bullet point,

¶ provide a detailed structural and behavioural view of the different tools, grouped on

packages of related functionality,

¶ provide a sound and reliable tool approach for supporting the migration of both Java

and .NET applications.

An overall functional description of the ARTIST suite, aligned with the methodology and

focused on checking its complete coverage, is introduced in section 2. This section groups

the different tools by their related role played in the instantiation of the methodology. Thus,

this section provides a functional description of the tools involved in: a) the pre-migration

phase, including tools for the migration feasibility assessment and the methodology

2
 Month 33

3
 Process and business ARTIST methodology tasks that require tool support are also partially

supported by the ARTIST suite, although most of ARTIST tools are intended to support the technical
tasks.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 9 of 61

customisation, b) the migration phase, including tools for the application discovery and

understanding, and for the application modernization, c) the post-migration phase, including

tools for the validation and certification, and d) the tool support for the target environment

specification.

Section 3 provides a detailed description of the ARTIST tools, grouped in packages of related

functionalities. This section provides both structural and behavioural views of each package,

and the interoperability among tools in terms of a) required and exposed interfaces, b)

sequenced timeline. For each tool, this section identifies its input and output artefacts.

Input artefacts can be provided by the user him/herself or be the output of another tool.

These inter-tool dependencies (in terms of artefact exchange) are highlighted in the section.

Besides, the section identifies other possible inter-tool dependencies, particularly those

related with functionality required by one tool and provided by another, which are specified

as APIs (e.g. through exposed interfaces). This section also discusses what tool

interdependencies can be automated (e.g. programmatically through APIs) or managed by

user interactions. In particular the user interaction models are specified in the behavioural

sequence diagrams.

The tools interoperability issue has been addressed from the earlier design and

development phases, and monitored along the entire development life-cycle, paying special

attention to detect and solve any eventual inter-tool misalignment. As a consequence, some

inter-tool architecture changes have been adopted and are reported in this final

specification.

Section 4 addresses the challenge of supporting both Java and .NET migration, by describing

a sound and reliable approach that combines Eclipse-based components with some Sparx

Enterprise Architect (EA) support4. Sparx developed some EA add-ons that enable the

discovery of .NET applications, producing UML models, which can be imported (through XMI

[10]) by the Eclipse-based ARTIST tools, notably from the Model Understanding Toolbox.

However, this approach could not be the most suitable for some users involved in the

migration of .NET applications. It requires the usage of diverse technologies, including EA

and the Eclipse-based ARTIST suite, to be added to the natural choice for .NET development:

Microsoft Visual Studio. Overcoming these limitations is challenging, because the existing

relevant baseline support for open source MDE techniques are Eclipse-based. Nonetheless,

ARTIST consortium addressed the support for C# model discovery and target generation,

seamlessly integrated within the Eclipse-based ARTIST suite. This section also describes the

baseline frameworks chosen for the instantiation of the ARTIST suite and the suite

deployment layout (according to this baseline).

Section 5 concludes the document by summarising the most important topics covered, the

current limitations of the architecture and the future work foreseen.

Appendix A provides a detailed description of the interfaces provided by each tool.

4
 With additional add-ons being developed in ARTIST project.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 10 of 61

To conclude, previous versions of this document (including working documents) were used

in ARTIST during the design and implementation of technologies and tools, in order to

ensure they are conceptually and technically aligned and compatible with other components

they might need to interoperate with.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 11 of 61

1 Introduction

This document provides the M33 description of the ARTIST integrated architecture. It

collects and describes the main functional tools that constitute the ARTIST suite, that is, the

comprehensive set of tools that enables users to instantiate the ARTIST methodology [1]

within a project on migrating application to the Cloud.

ARTIST tools are described as functional blocks, as one of the purposes of this high level

architecture is to provide an overall and comprehensive functional description of the entire

ARTIST suite. The internal representation of the tool (i.e. its internal technical specification)

is not addressed in the document and left to corresponding technical reports (for each

individual tool) that describe them.

This overall description aims to prove a complete and correct coverage of the ARTIST

methodology. In this sense, we check whether the ARTIST tools suite covers the entire

methodology, particularly the technical tasks at functional level.

Special attention is being paid to address the interoperability concerns, that is, the

dependencies between tools and the technical way these dependencies are managed. This is

of primary importance for an IP project like ARTIST, as many building blocks collaborates

together to instantiate common functionalities. Thus, an earlier detection of potential

interoperability issues helped us to incorporate them as drivers of the technical design of

each specific tool, ensuring a smooth and seamless integration. Interoperability implies

different dimensions to take care of, which allows identifying and defining:

¶ The message exchange, including compatibility of data content (semantic

alignment), data format, serialization format, etc.

¶ The exchange protocols/channels and the technical approaches to support tool

interoperability.

¶ User-driven interaction model, as we foresee most of the interoperability situations

are driven by end-users.

This analysis enables us to obtain an earlier detection of possible conceptual and technical

misalignments (among tool providers), either at conceptual (i.e. semantics), functional or

technical level. Based on this, this document proposes a harmonized conceptual, functional

and technical common view that removes these misalignments and enables the specification

(by each tool provider) of an interoperable tool design.

In particular, we identify the dependencies between tools by detecting the products they

consume (as inputs) and produce (as outputs). Moreover, we also detect other

dependencies (beyond product provision and consumption), formalized as functional

requirements and normally satisfied by required and exposed interfaces (i.e. application

programming interface (API)).

Because the ARTIST suite supports, as a starting point, the migration of both Java and .NET

based applications, this document addresses how the ARTIST suite covers both platforms.

Nevertheless, it is worth mentioning that the ARTIST methodology is generic enough to

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 12 of 61

cover all programming languages, although the ARTIST suite is currently focused (for

practical reasons) on the support for migrating .NET and Java based applications.

This document is structured as follows. Section 2 provides an overall conceptual and

functional introduction to the entire ARTIST suite, organised according to the ARTIST

methodology. Section 3 provides, both individually and on the scope of its functional group,

a more detailed description of each ARTIST tool from both structural (i.e. component

dependencies, required and provided interfaces, etc.) and behavioural (i.e. temporally

ordered interactions) perspective, focusing mainly on interoperability concerns. Section 4

describes the ARTIST suite coverage for the migration of Java and .NET based applications,

and provides a deployment view of the entire ARTIST suite. Section 5 concludes the

document by summarising the most important topics covered and the current limitations of

the proposed architecture. The APPENDIX A: Exposed Interfaces describes the interfaces

exposed by each tool included in the ARTIST suite.

The content of this document is an update of the first D6.4.1 ARTIST Integrated Architecture

delivered in M15, which described the ARTIST Suite architecture. The sections that have

been updated from previous document version are labelled with UPDATE label.

2 Overview of the ARTIST Integrated Conceptual Architecture
UPDATE

This section sketches the structural view of the ARTIST suite architecture. More elaborated

behavioural and structural views of this architecture will come in next sections. The

architecture is presented here as a complement (from a realization perspective) to the

ARTIST migration methodology as specified in [1].

The ARTIST suite architecture (cf.

Figure 1) is structured in blocks that correspond to the main ARTIST methodology phases,

i.e. pre-migration, migration and post-migration. The corresponding ARTIST tools have been

identified and classified at functional level according to their main functionalities, but are

not necessarily implemented following strictly this tool distribution. Arrows in this UML

package diagram describe dependencies between tool packages.

Some tools would eventually depend on results obtained from actions undertaken by other

tools. This is represented in the overall architecture diagram by a dependency connection

between the packages these tools belong to. We will provide more details on tool

interoperability in next sections.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 13 of 61

Figure 1 : Overall ARTIST Architecture

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 14 of 61

2.1 Tools for Migration Feasibility Assessment

Migration feasibility assessment package will assist end-users during the pre-migration

phase on decision-making activities that estimates the benefits, risks or costs of the

migration. This package includes the following tools:

 Maturity Assessment Tool (MAT) enables end-users to estimate the existing gap

between the existing application (as is) and the migrated application (to be) in terms

of business and technical (i.e. architecture) concerns. MAT outcome report depicts

the position of the initial and final situations of the existing application in a

quadrant, but also elaborates on global migration goals and recommendations, and

assists users to identify/select possible target Cloud environments.

 Business Feasibility Tool (BFT) allows decision makers evaluating the business

aspects of the migration, including cost estimations, target business models,

migration risks or organisation level processes. BFT supports its users to learn how

the organisational changes required to support the new Cloud-based deployment

schema of the migrated application may impact a company/organization.

 Technical Feasibility Tool (TFT) provides estimation, based on a migration task

breakdown and metrics computation, of the technical complexity and efforts

required by the migration.

2.2 Tool s for ARTIST Methodology customisation

Methodology customisation package, based on the results of the migration feasibility

assessment, provides a tailored modernization blueprint, that is, a personalisation of the

ARTIST generic migration methodology to the concrete modernization project. This package

includes:

 Methodology Process tool (MPT), based on the results processed and obtained

during the migration feasibility assessment, defines a customized migration process

tailored to the concrete migration needs of the existing application. The

methodology process tool shows the customized process in detail, its tasks being

broken down in a step-by-step process, including links to invoke the tools required

to accomplish each individual task.

2.3 Tool s for Target Environment Specification

The target environment specification package works offline to provide model descriptions

of the various target Cloud environments, that is, models that characterize the features and

services offered by Cloud providers and offerings. These features will be further used by

ARTIST users to express migration requirements on the target Cloud environment.

Moreover, this package allows to characterize the behaviour of applications deployed in

target Clouds, and classify them via a stereotyped taxonomy according to their average

behaviour. Based on these requirements, the Cloud environment models and the taxonomy

classification, the ARTIST suite assists the user to decide which Cloud environment better

fulfils his/her application needs.

The tools of this package are the following ones:

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 15 of 61

 Profiling Tool (PT) profiles applications and benchmarks in order to acquire a

number of runtime parameters that can be used in order to characterize their usage

of the resources (i.e. for CPU usage it can be: CPU%, cache hits/misses, I/O, context

switches etc.). Preferably, this is done on a reference platform for easier and

meaningful comparison, e.g. the developer's hardware. The purpose of the PT is to

acquire these runtime values of concrete parameters so that they can be used in the

next phase during the classification process.

 Benchmarking Test Suite (BTS) computes benchmarking metrics on selected Cloud

environments in order to characterize their performance and capabilities. BTS uses

these results to populate models (compliant to the ARTIST CloudML [4] meta-model)

in the ARTIST repository, which are subsequently used for the characterization of the

functional and performance aspects of the target environments during the

expression of migration requirements.

 Performance Stereotype Classification Tool (PSCT) is used to classify applications

according to a performance stereotype taxonomy. The classification tool compares

the runtime traces/footprint of arbitrary application components to the runtime

trace/footprint of the benchmarks in order to identify the category the application

component belongs to. After this identification, the tool can search in the BTS

results, in order to determine the best matching Cloud infrastructure or platform.

Moreover, BTS populates the ARTIST repository with model instances that describe the

features of some target Cloud environments. The modelling process has two branches:

¶ Application Type Taxonomy model: the purpose of this model is to capture the

different application types and the way they utilize the underlying resources

(storage, CPU, GPU and network). Different types are defined based on real-life

applications and they all end up in the same base footprint types, which indicate

how they utilize the resources. Examples of such footprints may be cache hits, cache

misses, CPU utilization etc.

¶ Provider description model: the purpose of this model is to capture features and

characteristics of the target platforms such as cost, availability, performance

information etc. The performance is measured by the execution of the benchmarks

(and their corresponding scores, usually time-to-finish) done by the BTS.

2.4 Tool s for Application Discovery and Understanding

Model Discovery Toolbox (MDT) and Model Understanding Toolbox (MUT), under the

Application Discovery & Understanding package, provide discovery and then understanding

capabilities from the existing application at different levels of complexity, ranging from very

low level details to higher abstractions according to different concerns/views. This

representation is realized by inspecting the artefacts of the existing application, including

not only program code but any other possible artefacts: i.e.; configuration files, data source

schema, etc.

 Model Discovery Toolbox (MDT) enables modellers to obtain raw (e.g. low level)

platform specific models (PSM) that describe the content of the existing application

and its artefacts. MDT users can rely on a taxonomy of artefacts in order to guide

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 16 of 61

the detection, classification and parsing of such artefacts and incorporate their

relevant content to the raw PSM. ARTIST offers two specializations of MDT: Java

Discovery Toolbox and .NET Discovery Toolbox, specialised on the analysis and

modelling of Java and .NET applications.

 Model Understanding Toolbox (MUT) enables modellers to obtain higher level

platform independent models (PIM) from the PSMs produced by the MDT. MUT uses

a set of specific model-to-model (M2M) transformations to generate different PIM

views, addressing different modelling concerns.

2.5 Tool s for Modernization

Modernization package assists the end-user in the process of transforming his/her

application into a new version of this application that satisfies the migration goals and can

be deployed onto the selected Cloud target environment. The tools of the modernization

package are the following:

 Goal Modelling Editor (GME) enables the end-user (i) to express migration

requirements (about the desired target environment) in the models that describe

the existing application and (ii) to search for and select target Cloud providers that

match the migration requirements and application taxonomy classification.

 Cloudification/Optimization Toolbox (COT) adapts and ultimately optimize, by using

transformation techniques, the models of the existing application models into the

target compliant models satisfying the target requirements.

 Code Generation Toolbox (CGT) and Deployment Tool (DT) generate, out of the

transformed models, the compilable code and deployment descriptors the end-user

needs in order to generate a deployable application bundle, compatible with the

selected target Cloud environment.

 Reusability Trace Tool (RTT) enables the traceability between the existing source

code and the model views when applying a set of M2M and M2T transformations

during the modernization phase.

Both application discovery and understanding package and the modernization package,

which work at model level, will also include tools to design and use meta-models, extract or

create models, express requirements on them, and transform them by applying model to

model (M2M) and model to text (M2T) transformations5:

 M2M Transformation Tool (M2MTT) provides model-to-model transformation

(M2MT) capabilities required by some MDFE tools, such as the OT in order to

transform models by applying specific M2MT to them.

 M2T Transformation Tool (M2TTT) provides model-to-text transformation (M2TT)

capabilities required by some MDFE tools, such as the TGT, to generate textual

artefacts such as source code and other artefacts from given models.

5
 These components constitute the baseline framework for both packages and are not explicitly

included in this integrated architecture, although referenced, to keep the focus on the functional
representation of the architecture.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 17 of 61

Both M2MTT and M2TTT provide baseline support for ARSTIST tools that require applying

transformations to models. As such, these tools do not implement any concrete ARTIST

methodology task, but provide the transformation technology required by some.

2.6 Tool s for Validation and Certification

Finally, during the post-migration phase, the following ARTIST validation and certification

package tools are used:

 Testing tool enables the end-user (i) to verify the behavioural equivalence between

the migrated application and the original application (functional requirements), and

(ii) to validate the fulfilment of the general migration goals (non-functional

requirements). Two different versions of the testing tool for verifying the

behavioural equivalence have been considered:

 Test-Case based Behavioural Equivalence Tool (TCbBET), which determines the

behavioural equivalence between the original and migrated applications

through the model based simulation of abstract test cases (e.g. at PIM level)

obtained from both the original and migrated application. Additionally, this tool

generates code-level test cases in order to test the migrated application.

 End-User based Behavioural Equivalence Tool (EUbBET), which determines the

behavioural equivalence between the original and migrated applications, by

recording series of experiment logs obtained through the testing by end users of

both the original and migrated applications. These logs are abstracted and

compared to determine equivalent behaviour.

The non-functional verification is assessed by the

¶ Non-Functional Verification Tool (NFRVT)6, which computes quality metrics on

migrated application, computed through model-based simulation.

 SbSp Certification Tool (SbSpCT) enables certifiers to check the migrated application

against quality standards to determine the achieved quality level (Gold, Silver and

Bronze).

2.7 ARTIST Repository

A central role in the ARTIST architecture is played by the ARTIST repository, a central

repository of reusable model driven engineering (MDE) artefacts, e.g. meta-models, M2M

and M2T transformations, generic model, etc., which are produced and consumed at

different phases of the ARTIST migration methodology. This artefact repository is essential

to the ARTIST approach, since producing generic and reusable (in multiple domains)

artefacts is a complex and time consuming task. Therefore, their availability for further re-

usage at any time or in any migration project will simplify and significantly reduce the

migration efforts and costs. ARTIST tools can access the ARTIST repository directly or

through the ARTIST Marketplace, producing and consuming required artefacts. The access

6
 These components, with similar functional scope, have been merged into one in this overall

architecture diagram in order to simplify it.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 18 of 61

through the ARTIST Marketplace offers to the clients browsing and searching capabilities

into the repository.

3 Detailed ARTIST integrated architecture

This section provides a detailed description, both structural and behavioural of the ARTIST

functional tools introduced in previous section. Structural views identify the different

package tools, the artefacts they provide and consume and the interfaces they expose and

consume in order to interact with each other (i.e. exchanging information). Structural views

also depict interoperability dependencies with tools of other packages. Behavioural views

provide a user-centric and dynamic description of the interactions between the tools.

A detailed description of the interfaces exposed by each tool is included in the APPENDIX A:

Exposed Interfaces.

Note that the interfaces and methods they contain, which are introduced in next

subsections, use interface names and method signatures that are merely indicative. These

names and signatures have been chosen at conceptual level, aiming to communicate the

conceptual artefacts exchanged between the tools. Likely, during the tools design and

development phases, these names and signatures have been replaced by their

implementation counterparts.

3.1 Tool s for Migration Feasibility Assessment UPDATE

Tools in ARTIST modernization assessment package are: Maturity Assessment Tool (MAT)7

[14], Technical Feasibility Tool (TFT) [15] and Business Feasibility Tool (BFT) [16].

3.1.1 Structural description

MAT receives as input the information that the user provides through the MAT

questionnaire and produces as output several MAT reports, which are serialized into the

ǳǎŜǊΩǎ ǿƻǊƪǎǇŀŎŜ8 or to the ARTIST repository9. These MAT reports, namely: the end-user

report, the MPT report and the GML report, contain a ŘŜǘŀƛƭŜŘ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ǘƘŜ ǳǎŜǊΩǎ

answers to the MAT questionnaire, some figures like the in-quadrant position, migration

goals and recommendations. As suggested by their names, these MAT reports are consumed

by other tools: TFT, BFT, the Methodology Process Tool (MPT)10, the Reusability Trace Tool

(RTT) and different Testing Tools (TT)11. Eventually, the migration goal model produced by

MAT can be further edited by the user, using the Goal Modelling Editor (GME). Additionally,

MAT compiles a common iReport (intended for end-user consumption) that integrates the

most relevant results of the pre-migration phase, generated by MAT, TFT and BFT.

7
 ARTIST tool names and acronyms are introduced in each section to help readers to identify them.

8
 By workspace, we refer to the Eclipse workspace, a concrete file-system directory managed by the

Eclipse IDE.
9
 In case of collaborative projects.

10
 MPT is introduced in next section.

11
 They will be introduced in the Testing and Validation section.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 19 of 61

TFT manages different inputs: i) the MAT GML report (i.e. the migration goals model and the

suggested Cloud target environment) and ii) a high level PIM (i.e. component model) of the

existing application. Inputs will be selected by the user (i.e. the MAT report, the PIM

representing the existing application). TFT produces a TFT report which is saved into the

ǳǎŜǊΩǎ ǿƻǊƪǎǇŀŎŜ ŀǎ ǿŜƭƭΦ ¢Ƙƛǎ ǊŜǇƻǊǘ Ŏƻƴǘŀƛƴǎ ŀ ōǊŜŀƪŘƻǿƴ ƻŦ ǎǳƎƎŜǎǘŜŘ technical migration

tasks and estimated efforts. TFT report is consumed by the MPT and the BFT.

Figure 2 Migration Feasibility Assessment package

BFT also manages different inputs: i) the MAT report, ii) the TFT report (i.e. effort

breakdown) and iii) business scenarios stored in the ARTIST repository. As before, both MAT

and TFT reports are selected by the user, while target Cloud models can be obtained by BFT

ŀǳǘƻƳŀǘƛŎŀƭƭȅ ŦǊƻƳ ǘƘŜ ǊŜǇƻǎƛǘƻǊȅΦ .C¢ ǇǊƻŘǳŎŜǎ ŀ .C¢ ǊŜǇƻǊǘ ǿƘƛŎƘ ƛǎ ǎŀǾŜŘ ƛƴǘƻ ǘƘŜ ǳǎŜǊΩǎ

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 20 of 61

workspace as well. This report contains KPI time series and analysis of costs, benefits,

operational risks or organizational changes.

As depicted in Figure 2, tools from ARTIST modernization assessment package interact with

each other, mostly asynchronously (e.g. user-driven) by exchanging XML reports through the

user workspace. As stated before, MAT report is consumed by both BFT and TFT. BFT

consumes the MAT business report on future application situation. TFT consumes the

migration goals model created by MAT. In turn, BFT can consume TFT effort and task

breakdown analysis.

TFT could also use information provided by the Reusability Trace Tool 12(RTT) to understand

the percentage of reusable source code available for a component, since this percentage

may impact the estimation of the effort required to migrate the component.

Finally, the reports produced by MAT and TFT are imported (through the workspace) by the

MPT to instantiate the specific modernization methodology according to the migration

project.

3.1.2 Behavioral description

Sequence diagram in ¡Error! No se encuentra el origen de la referencia. describes the user-

centric behaviour of migration feasibility assessment tools.

The migration feasibility assessment can be an iterative process, as the user13 can go back

and forth iteratively to modify any input provided at any task of this process in order to

refine the obtained results.

The user starts by assessing the maturity of the existing application, performing both the

technical and business evaluation using MAT. This analysis (for technical and business

dimensions) can be done in parallel or sequentially (as depicted in the sequence diagram).

¢Ƙƛǎ ǘŀǎƪ ǊŜǉǳƛǊŜǎ ǳǎŜǊΩǎ ŀƴǎǿŜǊǎ ǘƻ ǘƘŜ ƳŀǘǳǊƛǘȅ ǉǳŜǎǘƛƻƴƴŀƛǊŜΦ !ǎ ŀ ǊŜǎǳƭǘ ƻŦ ǘƘƛǎ ǘŀǎƪΣ ŀ

maturity report containing responses on both the business, technical and process sections is

provided, as well as the migration goals model.

Next, the user can evaluate the technical feasibility of the migration using the TFT. The user

selects a MAT report from his/her workspace (in order to obtain the migration goals).

Moreover, the user selects a UML component model of his/her application and requests TFT

to load it. Alternatively, the user can select a UML class model of his/her application and

requests MUT to provide a high-level component model representation of that application14.

After performing the technical feasibility analysis, TFT provides a report that includes a

breakdown of migration tasks and their estimated efforts, which the user saves in his/her

workspace.

13

 To simplify the description, both the UML sequence diagrams and textual description refer to users
of the tools without specifying their roles on concrete process steps, as detailed in the ARTIST
methodology [1]
14

 A component PIM

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 21 of 61

Figure 3 Migration Feasibility Assessment process

Then, the user proceeds with the evaluation of the business feasibility of the migration,

using the BFT. This task requires assessment reports obtained from the MAT and TFT, and a

list of business scenarios (not included in the sequence diagrams since they are loaded

automatically by the BFT). After performing the business feasibility analysis, BFT provides a

report that contains results of the business analysis such as KPI time series metrics,

enterprise model, risk analysis, business process, ROI or payback, which the user saves in

his/her workspace or in the ARTIST repository.

At this point of this phase, after having assessed the maturity, technical and business

feasibility of the migration, the user can iterate again over the whole process refining his/her

inputs in order to obtain a more precise or refined assessment. At the end of the phase, the

migration assessment concludes with the decision of proceeding with the migration or re-

evaluating the migration assessment (or even withdrawing).

The next sequence diagram details the specific interactions between migration feasibility

assessment package tools and other ARTIST tools during the modernization assessment

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 22 of 61

phase. As shown in Figure 415, only TFT requires interacting with tools located in other

technical packages.

Concretely, the TFT requires interacting with the MUT in order to obtain high level (PIM)

models (views) of the existing application, according to several concerns, to be determined

from the deep analysis of the artefacts. In particular, TFT requires component models of the

application. Moreover, during the technical evaluation, the user may (optionally) introduce

migration requirements on components using the GME. These requirements are used by the

TFT to derive migration tasks that could affect identified application components.

Figure 4 External dependencies on the migration feasibility assessment

3.2 Tool s for ARTIST Methodology customisation

At the end of the ARTIST pre-migration phase, after a positive feasibility assessment (e.g.

migration accepted), the remainder of the ARTIST migration process can be tailored to the

specific characteristics of the migration project (i.e. the concrete application to be migrated

and the expressed migration goals) using the Methodology Process Tool (MPT) [2]. The

objective is to create a specific blueprint for the migration project, that is, a specialization of

the ARTIST methodology. MPT renders the customized methodology in a graphical

representation, showing tasks for each ARTIST phase as widgets logically connected through

15

 The interface exposed by an ARTIST tool and used in the sequence diagrams includes methods that
provide the artefacts produced by the tool, using the signature provide<Artefact>. In interface
diagrams this approach is the most convenient for method naming. But it reads weird in sequence
diagrams, because the method message seems to stream from the caller, as if the caller would
provide the artefact, when it is the called method which actually does.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 23 of 61

the ARTIST methodology workflow. Moreover, each task widget includes links to the tools

that could be used to accomplish it. Thus, selecting a task enables modellers to trigger in the

ARTIST integrated tools suite (e.g. Eclipse environment) the corresponding task tool.

3.2.1 Structural description

As shown in Figure 5, MPT uses reports generated during the early assessment phase by the

MAT, the TFT and the BFT, since these reports contain the information required to

particularize the ARTIST methodology to the concrete migration project. These reports can

be loaded by the user in the MPT from his/her workspace.

As commented before, the MPT can programmatically launch any required ARTIST tool16 to

accomplish any of the tasks described in the tailored methodology blueprint.

Figure 5 Methodology customisation package

3.2.2 Behavioral description

Next sequence diagram (Figure 6) depicts the user-centric process that customizes the

ARTIST methodology using MPT.

After the migration feasibility assessment, once the migration has been accepted, the user

uses MPT to customize the ARTIST methodology to his/her concrete migration project, using

the technical and business assessment reports obtained during the previous phase. MPT

creates a tailored migration blueprint, consisting in the concrete instantiation of remaining

ARTIST phases and tasks. As MPT requires importing the feasibility assessment reports, the

user is prompted to select the MAT, TFT and BFT reports from his/her workspace. Once the

methodology customized blueprint has been created through the MPT, the user can

asynchronously launch the ARTIST tool(s) required to accomplish any task included in the

blueprint.

16

 This feature mostly considers ARTIST tools implemented as Eclipse plugins, integrated within the
same MPT Eclipse instance, although Web-based ARTIST tools can be also launched.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 24 of 61

Figure 6 Methodology personalization process

3.3 Tool s for Target Environment Specification UPDATE

Tools in ARTIST target environment specification package are: the Profiling Tool (PT),

Benchmarking Test Suite (BTS) and Performance Stereotype classification Tool (PSCT).

3.3.1 Structural description

Figure 7 depicts the structural relationships among the tools in the target environment

specification package. BTS uses Cloud provider specific benchmarking tools to benchmark

providers and obtain benchmark scores, which are used to populate Cloud environment

models in the ARTIST repository17.

PT uses a set of profiling tests, a set of benchmarks for application categories and selected

existing components, in order to obtain runtime traces for the components and the

benchmarks for application categories on a reference environment. As a result both runtime

traces for components and benchmarks are collected. PT needs to request BTS to install the

benchmarks on the reference environment.

PSTC compares the runtime traces for components and benchmarks obtained by the PT, and

classifies the components to the nearest benchmarks.

Other package tools will interact with this package tools in order to obtain some

benchmarking scores and profiling traces. In particular, the NFR Verification Tool (NFRVT)

uses benchmark scores and profiling traces.

17

 In the diagram, BTS accesses the ARTIST marketplace to provide the Cloud environment models
which are stored in the repository. ARTIST tools have no direct access to the repository but rather
through the marketplace, as explained in section 2.7

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 25 of 61

Figure 7 Target environment specification package

3.3.2 Behavioral description

Figure 8 describes the offline behaviour of the tools in the Target Specification package.

Figure 8 Target environment specification process

ARTIST benchmark profilers use BTS to benchmark the performance and capabilities of

Cloud environments, and obtain the corresponding benchmark scores. These scores are

processed to complete the model representation of these Cloud environments, available in

the ARTIST repository, for reuse at several phases of the ARTIST migration methodology.

Asynchronously, application developers can also evaluate the behaviour of application

components in order to capture patterns on the usage of Cloud resources which, in turn, are

used to classify the average behaviour of the application component for latter estimation on

required Cloud provider resources. For this, PT is used to obtain runtime profiles for both

the application component itself and some representative benchmarks for each type of real

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 26 of 61

life applications, in a reference environment. As the benchmarks need to be deployed and

executed in the reference environment, PT requests BTS to install them.

In a last step, the application developers use the PSTC to classify each concrete existing

application component according to the nearest application type, based on the runtime

profiles obtained by PT for the component and the benchmark that represent that group of

applications.

3.4 Tool s for Application Discovery and Understanding UPDATE

Tools in ARTIST application discovery and understanding package are: the Model Discovery

Toolbox (MDT) [17] (two version available: Java Discovery Toolbox, .NET Discovery Toolbox)

and Model Understanding Toolbox (MUT) [18].

3.4.1 Structural description

The structural organization of the application discovery and understanding package is

depicted in Figure 9. There are two flavours of the MDT, one supporting the discovery of

Java-based applications, another one supporting .NET applications. MDT consumes selected

artefacts of the existing application (i.e. source code, configuration files, etc.) and provides

low-level PSMs of the application through its iMDT interface. This interface can be accessed

programmatically (notably by the MUT, as depicted in the component diagram) or through

the Eclipse workspace18. MDT provides an interface to the Reusability Trace Tool (RTT), from

the modernization package that traces existing code to elements included in the discovered

models.

Figure 9 Application discovery and understanding package

18

 Users can store and access low level PSM obtained by the MDT using the workspace. For instance,
such models can be inspected using Eclipse UML2 tools or Papyrus UML editor.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 27 of 61

MDT relies on M2M Transformation Tool19, as it eventually requires applying M2M

transformations to convert the obtained PSMs into models instances of another meta-

model20.

MUT consumes the PSMs provided by MDT and produces high level PIMs through its iMUT

interface. MUT also relies on M2M Transformation Tool, as it requires applying M2M

transformations to convert the PSMs obtained by the MDT into a number of different PIM

views. MUT is used by the TFT to obtain high level PIM component views of the existing

application through its iMUT interface (via the Eclipse workspace) and to inspect the main

characteristics for each component, in order to determine its required migration tasks.

3.4.2 Behavioral description

Figure 10 outlines the behaviour of this package tools during the discovery and

understanding of the existing application. This process can be conducted during both the

early assessment of the pre-migration phase and at the beginning of the migration phase,

when a deeper analysis of the existing application is required. The process starts with the

user selecting the application and requesting the MDT to discover a PSM that represents the

application. This task requires access (at least partially) to the source of the application. The

ǘŜǊƳ άǎƻǳǊŎŜέ ǊŜŦŜǊǎ ǘƻ any artefact (not only source code) required to build and execute the

application. As a result of this task, intermediate UML PSMs of the existing application are

obtained. Depending on the application nature (e.g. Java or .NET), the corresponding

specialized MDT tool is used.

From the PSMs of the application, the user requests to the MUT to build high level PIMs. In

general, the PIM models generated by MUT can offer different views: component, services,

data schemas, and so on21. Eventually, MDT may require to use the M2MTT in order to

convert certain low level PSM models into others.

19

 This component belongs to the baseline of the Modernization package as described in a next
section.
20

 For instance, in order to transform model instances of the Modisco Java meta-model into model
instances of UML meta-model.
21

 In this sense, although for the sake of simplicity, the model generated by the MUT is described as a
single one (with multiple views), in practice MUT can provide multiple models describing the legacy
application.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 28 of 61

Figure 10 Application Discovery and Understanding process

Ultimately, MUT obtains high level PIMs by applying M2M transformations on the low level

PSMs of the application (by sending to the M2MTT a transformModel message). Indeed,

different M2M transformations can be applied in chain to derive more specialized

models/views of the application from previous models.

3.5 Tool s for Modernization UPDATE

Tools in ARTIST Modernization package are: the Goal Modelling Editor (GME) [22], the

Cloudification/Optimization Toolbox (COT) [11] [20], the Code Generation Toolbox (CGT)

[21], the Cloud Target Selection Tool (CTST) [19], the Deployment Tool (DT) [19] and the

baseline tools (the M2M Transformation Tool (M2MTT) and M2T Transformation Tool

(M2TTT)) [11]. An additional tool, the Reusability Tracing Tool (RTT) [17][21] has been

included in this package since it is conceptually close to the M2MTT. However, it plays an

important role as well in the Application Discovery and Understanding package.

3.5.1 Structural description

The structural organization of the Modernization package is depicted in Figure 11.

As commented, the GME enables users to express goals about the migration process,

affecting individual components or the application itself, linked to the PSM/PIM (provided by

the MUT). Moreover, based on these goals, GME assists the user on matching these goals to

suitable cloudification and optimization patterns.

The COT applies modernization22 and optimization patterns on the PIMs, producing

modernized PSMs of the application. Apart from the PIMs, the COT may require a set of

Platform Domain Models (PDMs) describing the technologies involved in the modernization

and optimization patterns, as well as modernization and optimization patterns themselves

22

 It refers to the modernization ǇŀǘǘŜǊƴǎ όŜȄǇǊŜǎǎŜŘ ŀǎ aнa ǘǊŀƴǎŦƻǊƳŀǘƛƻƴǎύ ǘƘŀǘ άŎƭƻǳŘƛŦȅέ ǘƘŜ
legacy application or its components.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 29 of 61

ŜȄǇǊŜǎǎŜŘ ŀǎ άaƻŘŜƭ н aƻŘŜƭέ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴǎ όaнa¢ǎύΦ !ǎ ŀ ǊŜsult, COT outputs

modernized and optimized PSMs that represents the modernized application23.

The CGT generates the code that corresponds to the PSM of the modernized application. As

the complete modernized code could not be obtained from the PSM of the modernized

application24, CGT may eventually need to reuse some existing code which can be traced

ōŀŎƪ ŦǊƻƳ ǘƘŜ t{a ōȅ ǘƘŜ w¢¢Φ /ƻŘŜ ƎŜƴŜǊŀǘƛƻƴ ƛǎ ōŀǎŜŘ ƻƴ άaƻŘŜƭ ǘƻ ¢ŜȄǘέ όaн¢ύ

transformations that should be available to TGT as well.

The Cloud Target Selection Tool (CTST) aims at exploiting the information about available

Cloud Target providers and their services, lying in the meta-models stored in the ARTIST

Repository, in order to make a suggestion about the Cloud target platform that best fits the

needs of the application to be deployed.

Complementing CGT, DT uses the PSM of the modernized application in order to generate

deployment descriptors, other configuration files and deployment scripts required to deploy

the application using specific M2T transformations for the target Cloud environment. DT

combines those descriptors with the modernized code and other required artefacts25 to

create a deployment unit as an archive file.

The RTT traces model elements (i.e. classes, method bodies, etc.) back and forth to existing

source code elements, aiming to reuse code during the code generation phase. As such, RTT

requires tracing models back to the existing code during the model discovery phase (e.g. RTT

depends on MDT), during the transformation of the original and the migrated models (e.g.

RTT depends on M2MTT) and during the code generation (e.g. TGT will use RTT).

23

 As a matter of fact, COT can work at legacy application level, thus modernizing the entire
application. But normally, it will work at component level, focusing on the modernization and
optimization of a particular feature (i.e. data persistence)
24

 A PIM of a legacy application does not capture the complete information required to re-generate
the modernized code, whereby some elements of the legacy code (i.e. method bodies) could be
required to fulfill the modernized code.
25

 Such as existing platform specific (i.e. J2EE, .NET) configuration and required files.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 30 of 61

Figure 11 Modernization package

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 31 of 61

Complementing these tools, the Modernization package also relies on a couple of baseline

low-level specialized tools:

¶ M2M Transformation Tool (M2MTT): baseline technologies supporting the

transformation between models, extending the ATL [6] framework.

¶ M2T Transformation Tool (M2TTT): baseline technologies supporting the

transformation from models to text, extending the Acceleo26 framework.

M2MTT and M2TTT are tools conceptually introduced in this analysis for completeness. They

are based on existing open source tools (e.g. ATL and Acceleo, respectively). Nonetheless, as

the work-package concerned with these features (namely WP9) is considering to introduce

extensions on these tools, they have been included in this description.

Interoperability between modernization tools, at user interface level, is mostly based on

workspace-through sharing (notably models), possibly complemented with some Eclipse UI

interoperability (thorough extension points)27. Thus, most of ARTIST modernization tools

exchange application models through the workspace, but at UI level they will scarcely

interact. On the contrary, interactions between some modernization tools and M2MTT and

M2TTT are expected to be more programmatic since they require less UI interactions

triggered by modellers.

3.5.2 Behavioral description

Next Figure 12 depicts the behaviour of the Modernization package tools. During the

migration phase, the user starts the migration of the existing application for each

component (or the application itself28). The process starts using high level PIM views

obtained by MUT, concretely those describing the components to be migrated. At this stage,

the user expresses migration goals associated to this model using the GME29. These goals

will be used by GME to determine the appropriate optimization patterns to apply to the

application/component model (in order to obtain a migrated application/component that

satisfies the goals). Then the user, using the CTST, searches for compatible target Cloud

environments that fulfil the goals expressed in the model view, and selects the most suitable

one. At this stage, the component is fully described by its PIM (including goals and target

Cloud environment selection). This PIM can now be cloudified/optimized into a target PSM,

which describes a new component design that is compatible with the Cloud target

specification and required goals. COT obtains this PSM by applying suitable

cloudification/optimization patterns (as transformations). The COT applies chains of M2M

transformations (whose selection depends on the PIM, the component requirements and

the selected target Cloud environment), using the M2MTT that actually performs the

transformations. When applying a chain of transformations to the PIM, the RTT is notified to

26

 Acceleo [7] is one possible M2T technology that is being explored.
27

 Interoperability mechanisms between ARTIST tools are more elaborated in section 4
28

 This behavioural description is essentially the same, but the Modernization focuses on one legacy
component or on the entire application.
29

 The sequence diagram explicitly distinguishes between global goals (expressed at application level)
and local requirements on concrete components.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 32 of 61

record the traces of transformations applied to the component model. Thus reusable code

snippets could be traced back during the code generation step.

In the next step, the user applies the CGT to generate code (and artefacts required to build

the code) from the modernized PSM, applying M2T transformations to obtain textual

artefacts (i.e. source code, compilation and building artefacts, etc.). TGT relies on the

M2TTT to apply chains of M2T transformations on the modernized PSM. The selection of

M2T transformations depends on the characteristics of the migrated component (i.e.

platform-dependent), the migration requirements and target Cloud environment (which is

described by Platform Domain Models or PDMs). The outcome at this stage consists in all

the artefacts required to build an executable compilation unit for the modernized

component.

In the last step of the Modernization phase, the user obtains the deployment unit (including

the deployment descriptors) required to deploy the modernized component into the target

Cloud environment. The deployment unit is created by the DT using the compilation unit,

the PSM for the migrated component and the PDM describing the target Cloud

environment. DT also relies on the M2TTT to conduct required chains of M2T

transformations to obtain textual deployment descriptors.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 33 of 61

Figure 12 Modernization process

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 34 of 61

3.6 Tool s for Verification and Certification UPDATE

Tools in ARTIST verification and certification package are: the Test-case based Behavioural

Equivalence Tool (TCbBET) [23], End-user based Behavioural Equivalence Tool (EUbBET)

[25], NFR Verification Tool (NFRVT) [22] and SbSp certification tool (SbSpCT) [24].

3.6.1 Structural description

The structural organization of the Modernization package is depicted in Figure 13.

Figure 13 Verification and Certification package

TCbBET uses MUT to obtain PIMs of existing test cases or derive them in case they were not

available for the original application. It uses the COT to migrate the test. TCbBET executes

the migrated models with the fUML [8] virtual machine. fUML is used to obtain execution

traces from the UML models representing the test cases. The fUML standard is accompanied

by a Java-based reference implementation of a virtual machine, which allows to compute

outputs from executing fUML activities with specified input parameters.

EUbBET depends on tools from both the Model Discovery and Understanding and the

Modernization packages, as they need the transformation traces that link user requests

from the migrated application to the original one. EUbBET uses the CDT to inject into the

migrated code a required logging mechanism that records the user activity.

NFRVT requires the migration goals provided by the MAT and the component specific

migration goals expressed using the GME. Besides, NFRVT requires profiles describing the

application, the benchmark resource usage provided by the PT and the Cloud environment

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 35 of 61

models provided by BTS. NFRVT also requires migrated models produced by the COT to

execute the validation in a fUML virtual machine. Furthermore, NFRVT requires a migrated

and deployed application running onto the target Cloud environment30.

All these three validation tools may optionally use the COT to request modernization

adjustments in case the validation fails.

SbSpCT works alone by collecting evidences that the certifier evaluates and providing the

corresponding certification label, therefore no dependencies have been captured in the

diagram.

3.6.2 Behavioral description

Next pictures depict the behaviour of the different validation approaches. During the post-

migration phase, the original and migrated applications are compared to each other

according to their behavioural equivalence. This equivalence can be evaluated based on two

parallel approaches: test cases or end-user evaluation.

In the first case (Figure 14), test cases for the original and migrated applications are

conducted. Test cases for the migrated application are obtained from the existing ones.

Optionally, if there are not enough test cases for the original application, they can be

obtained using the model-based analysis of the existing code (using the MUT). Models of

original test cases are modernized and optimized (similarly to the remainder of the

application) using the COT.

The test-case based behavioural equivalence is assessed at model level, executing both the

original and migrated test case models using the fUML virtual machine.

30

 All validation tools require a migrated application running on the target Cloud Environment. This
dependency has been expressed through the Code Generation Toolbox, although the Deployment
Tool also participates.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 36 of 61

Figure 14 Test-case based behavioural equivalence verification process

In the second case (Figure 15), the behavioural equivalence is evaluated through user testing

on both applications whose interactions, recorded in execution logs, are abstracted to

determine equivalent executions. This approach requires injecting logging code into the

source code of both applications prior to their execution. This injection in turn requires

getting access to the migrated system (through the COT) and accessing to the generated

code of the migrated application (through the CGT).

Figure 15 End-user based behavioural equivalence verification process

Apart from testing the behavioural equivalence, the fulfilment of the non-functional

requirements has to be verified as well (Figure 16). NFRVT collects global NF requirements

from the migration goals provided by MAT and the model-level goals edited within the GME.

Expected performance (and other NF requirements) that could be obtained from the

benchmark results and resource usage patterns are obtained from the PT. Alternatively, this

information could be obtained from the target Cloud environment model provided by the

BTS.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 37 of 61

Figure 16 Non-functional requirement verification process

Once assessed the behavioural equivalence or the fulfilment of the NF requirements, in case

it is negative, these tools can notify the COT and provide details that would assist in the

adjustment of some optimization31 patterns.

This phase concludes with the certification of the quality of migrated application, using the

SbSpCT which awards qualified applications with a certification label (e.g. gold, silver,

bronze).

3.7 ARTIST Repository UPDATE

Artefacts produced during the migration process are quite often reusable within other

phases of the migration process itself or when migrating the same application to another

target Cloud. They can also be relevant when migrating other applications that share similar

baseline technologies.

Model Driven Engineering (MDE) techniques foster the reuse of artefacts in general, and

during the modernization process in particular. Thus, meta-models can be used to model

many different applications implemented using similar frameworks or acting in comparable

domains. Similarly, M2M and M2T transformations can be reused in situations where

different applications (before and after being transformed) can be modelled using the same

meta-models.

Moreover, reusable MDE artefacts evolve along with the time, as they are applied to

different migration projects and so new requirements come. New versions of domain meta-

models and optimization M2M transformations are produced, by introducing changes in the

previous ones. Therefore, MDE artefact evolution requires to be addressed.

31

 In the context of COT, optimization patterns refer to any transformation that modifies the original
ŎƻŘŜ ǘƻǿŀǊŘǎ ƛǘǎ ƳƛƎǊŀǘƛƻƴ ǘƻ /ƭƻǳŘΣ ǘƘŀǘ ƛǎΣ ōƻǘƘ άŎƭƻǳŘƛŦƛŎŀǘƛƻƴέ ŀƴŘ ƻǇǘƛƳƛȊŀǘƛƻƴ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴǎΦ

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 38 of 61

ARTIST provides a repository of reusable MDE artefacts that is browseable and searchable

through a Marketplace [26]. ARTIST offers both Web and Eclipse integrated marketplace

clients. The ARTIST Marketplace Eclipse-based client, namely the ARTIST Repository Plugin is

seamlessly integrated with the rest of the Eclipse-based ARTIST suite, while the Web

Marketplace is suitable for access outside the ARTIST suite, see Figure 17.

Figure 17 ARTIST repository package

The ARTIST repository tracks MDE artefacts produced by any ARTIST tool through an

ArtefactTracker plugin that registers changes committed in tracked artefacts. This

information is stored in the repository and then processed to detect artefact inconsistencies,

track releases, track historic on artefacts changes, etc.

Moreover, every ARTIST tool can browse the ARTIST Marketplace searching for reusable

MDE artefacts which are compatible within their tool context: for instance, the Optimization

Tool can browse the ARTIST Marketplace, looking for M2M transformations whose target

meta-model is the one the open model (e.g. PIM) conforms to.

Next Figure 18 describes a possible usage of the ARTIST Marketplace to retrieve, store or

update artefacts (i.e. M2M transformations, M2T transformations, PIMs, meta-models, etc.)

created (or modified) by some ARTIST tools.

When the user requests (through a tool) to retrieve an artefact stored within the ARTIST

Marketplace, the tool contacts the ARTIST Marketplace to retrieve that artefact from the

repository given its UUID. Before, that artefact was selected by the user who browsed or

searched for it (i.e. keyword searching) using the Marketplace view.

Similarly, the user can request the tool to store (in the repository) an artefact he/she has

created using that tool. The tool sends the artefact to the marketplace which stores it and

then sends back its UUID.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 39 of 61

Figure 18 ARTIST Repository package

The user can store a new version of the artefact into the repository anytime. When the user

saves within an ARTIST tool a new version of the artefact (e.g. in its workspace) and if the

artefact is also managed by the repository, the Artefact Tracker notifies the new version to

be stored.

To summarize, next Table collects potential reusable artefacts that could be stored in the

ARTIST repository, based on the analysis of artefacts produced and consumed by the ARTIST

tools. Readers can refer to [27] for further reading about the collection of reusable artefacts

produced by ARTIST project.

Table 1. ARTIST reusable artefacts

Artefact Produced by Consumed by

Target Cloud Environment

models

Benchmarking Test Suite Technical Feasibility Tool,

Business Feasibility Tool,

Requirements Specification

Tool, NFR Verification Tool

Benchmark runtime profile Profiling Tool Performance Stereotype

classification Tool, NFR

Verification Tool

M2M transformations M2M Transformation Tool M2MTransformation Tool,

Model Discovery Toolbox,

Model Understanding Toolbox,

Cloudification/Optimization

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 40 of 61

Toolbox, Deployment Tool

M2T transformations M2T Transformation Tool M2T Transformation Tool, Code

Generation Toolbox,

Deployment Tool

Meta-models:

CloudML@ARTIST, Goal-based

Requirements Model,

Profiles (i.e. J2EE, .NET, etc.)

Platform Domain Models (PDM)

ARTIST Modelling Tools

(baseline)
32

Maturity Assessment Tool,

Technical Feasibility Tool,

Benchmarking Test Suite, Goal

Modelling Editor,

Cloudification/Optimization

Toolbox, Code Generation Tool,

Deployment Tool,

Several concrete artefacts of these types have been produced by ARTIST. Furthermore, any

ARTIST user or the community of ARTIST users can populate the ARTIST repository with their

own additional artefacts.

32

 ARTIST Modelling Tools are based on SOTA tools such as Eclipse EMF, UML2 and Papyrus. As they
are provided by an OSS community (the Eclipse community), they are not explicitly described in this
document

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 41 of 61

4 ARTIST suite

4.1 ARTIST suite interoperability UPDATE

The ARTIST tools, whose functionality and interdependencies have been described in

previous sections, constitute the comprehensive ARTIST suite. The ARTIST suite currently

supports the migration of both .NET and Java based applications, although the ARTIST

generic approach (based on MDE techniques) makes it compatible, potentially, with the

migration of any other type of application.

This section depicts the implementation approach for the ARTIST suite, focusing on the

support for the migration of both Java and .NET based applications and on the technical

solutions for corresponding interoperability issues.

Figure 19 ARTIST suite architecture: interoperability

The ARTIST suite comprises these main blocks of tools (see Figure 19 from left to right):

 .NET-based ARTIST Suite, integrated within Sparx33 Enterprise Architect (EA) [9],

which includes a set of add-ons developed by ARTIST project that supports the

33

 Sparx is a partner of the ARTIST project

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 42 of 61

discovery and target generation of .NET C# based applications. This suite also

includes an EA Bridge component that bridges EA and the Eclipse frameworks,

allowing importing and exporting models (using the XMI format) compatible with

Eclipse.

 Browser-based (Web-based) ARTIST suite, targeting mostly ARTIST end-users

playing a business role. This tooling provides functionalities targeting a broader

range of ARTIST users (including the business role), compared to the more technical

ARTIST users, which requires more specialized tools. Examples of tools in this block

are: the Maturity Assessment Tool, the SbSp Certification Tool, the ARTIST

Marketplace or the Methodology Process Tool (MPT).

 Eclipse RCP based ARTIST suite, targeting mostly ARTIST end-users playing a

technical role. Both the Eclipse platform itself and the Eclipse Modelling Project

(EMP) tools, as baseline for the ARTIST suite, are the natural choice, considering the

selection of required MDE techniques and open source tools for the different ARTIST

technical work packages. Examples of ARTIST Eclipse tools in this group are those

offering technical capabilities, such as the Technical Feasibility Tool, the

Methodology Process Tool, the Model Discovery & Understanding Toolboxes, the

Goal Modelling Editor, the Cloudification/Optimization Toolbox, the Code

Generation Toolbox, the Deployment Tool or the different Testing Tools.

 Standalone Java-based tools, targeting mostly the ARTIST end-users that

characterize the Cloud providers and their offerings, following an alternative and

parallel path execution of the ARTIST methodology, namely the Target Environment

Specification. Examples of ARTIST Eclipse tools in this group are: the Benchmarking

Test Suite and the Performance Stereotype Classification Tool. Additional Java-based

tools have been created as part of the Model Discovery & Understanding toolboxes

and the Cloudification/Optimization Toolbox , targeting mostly the migration of .NET

based applications (see [11][12][13]).

As commented in the introduction of this section, the ARTIST tooling supports the migration

of both Java and .NET applications. However, Eclipse support for .NET is more limited34. .NET

applications can be developed using Microsoft Visual Studio or other corresponding

development environments.

The ARTIST approach for the migration of .NET application relies on the usage of Sparx EA (it

is included in the ARTIST suite) during certain tasks of the ARTIST methodology (notably

during the Model Discovery and the Target Code Generation tasks). Thus, models of .NET

applications can be obtained out of .NET projects using EA, and the final target code can be

generated (out of the migrated models) using EA as well.

The remainder of the ARTIST methodology tasks involving modelling are supported by the

Eclipse ARTIST tooling. The migrated .NET code can be compiled and assembled for

deployment using Microsoft Visual Studio or another compatible development environment.

34

 Limited functionality to develop .NET applications using C# in Eclipse is supported by Mono project:

http://www.mono-project.com/Development_Environments

http://www.mono-project.com/Development_Environments

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 43 of 61

Similarly, Java-based applications can be developed using the Eclipse JDT or another Java

development environment. The projects for these Java applications can be then easily

imported into the Eclipse workspace, making them ready to be managed by the ARTIST

tools.

EA and Eclipse ARTIST tooling exchange models (notably UML ones) using the XML Metadata

Interchange (XMI) [10] serialization format. On this regards, Sparx has developed - in the

context of ARTIST project - an EA Bridge (see [12]) that enables importing/exporting ECORE

models from/to the ARTIST Eclipse based Suite.

The interactions between the browser-based and the Eclipse-based ARTIST Suite are user-

driven and mediated through the Eclipse workspace and the ARTIST repository. The user can

save, locally on his/her workspace or in the ARTIST repository, the artefacts produced while

performing concrete tasks of the ARTIST methodology (using the browser-based tools). In

turn, the user can import them within the Eclipse-based tools later on, when required. On

this regards, the Methodology Process Tool (MPT) enables users to manage the entire

ARTIST Suite from the Eclipse IDE, launching ARTIST toolboxes regardless they are

integrated within Eclipse (i.e. as plug-ins) or run as Web applications in browsers.

An exception to this rule is the interaction between the ARTIST Marketplace and the ARTIST

Repository Plugin with the ARTIST repository, which seamlessly exchange artefacts through a

low coupled service architecture. The marketplace offers browsing and searching

functionalities to the end-users. Thus, the marketplace is the user access point to the

repository. Nevertheless, the ARTIST tools can access the repository directly through the

repository plugin to retrieve/save artefacts, provided they have the artefacts URIs.

Eclipse-based ARTIST suite is tightly integrated within the Eclipse framework and the Eclipse

Modelling Project (EMP) tools, using the Eclipse platform API and thus contributing to the

Eclipse workbench. Artefacts produced and consumed by the Eclipse-based ARTIST suite can

be shared with other ARTIST tool suite instances through the ARTIST Repository by using the

ARTIST Repository plugin. Alternatively, these artefacts can be stored locally in the Eclipse

workspace for personal usage.

Interactions between tools within the ARTIST suite can be driven by:

 User interactions: when the realization of a task of the ARTIST methodology, which

involves different tools, goes through them based on user interactions. This

approach is particularly suitable for the Eclipse-based ARTIST suite, where the user

interactions move the focus from one tool to another.

 Task internal transactions: when a single task, triggered by a single user interaction,

requires the collaboration of multiple tools. Each tool, in turn, invokes

programmatically the next one in the defined workflow, in order to complete the

task. This approach is also adopted by the Eclipse-based ARTIST suite. We have not

faced situations where an Eclipse-based ARTIST suite may require contacting a

remote Web ARTIST tool (excepting those accessing to the ARTIST Repository and

which are managed by the Eclipse ARTIST Repository plugin).

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 44 of 61

In ARTIST, we consider different mechanisms for information exchange between tools. The

selection of one mechanism or another is determined by:

 The nature of the pair of tools involved in the communication and the type of

communication: they could be Web tools, .NET EA Add-ons or standalone Eclipse

tools.

 The purpose of the communication: local communication between tools (sender

and receiver tools are locally executed) or distributed communication (e.g. for

sharing artefacts within a team or the ARTIST community).

 Transactional scope of the communication: whether the communication spans

across several tasks, involving user awareness and/or intervention, or is rather

included within a single transactional task requiring direct tool communication.

Taking these considerations, the following information exchange mechanisms are supported

in the ARTIST tooling:

 Information exchange through the local workspace: this approach is suitable when

tools of different natures need to exchange local information, but also when the

tools exchange artefacts produced and consumed locally. An example is the

exchange of the maturity assessment report (i.e. the migration goal model) between

the MAT and the TFT, when one single user conducts both the maturity assessment

and the technical feasibility analysis tasks in the pre-migration phase. This approach

is also suitable to exchange local artefacts between most of the Eclipse ARTIST tools.

 Information exchange through the ARTIST repository: this approach is suitable for

exchanging reusable and shareable information between members of the same

migration team or within the ARTIST community. The approach is also suitable for

communicating information between tools of different kind. An example of this

communication is the exchange of models describing Cloud environments, between

the Target Environment Specification package that created these models and the

Forward Engineering suite (notably the Cloud Target Selection Tool that uses these

models to match compatible Cloud offerings).

 Information exchange through direct API invocation: this approach is suitable when

a direct message exchange is required between two Eclipse ARTIST tools within a

single transactional task. An example is the TFT that requires importing and parsing

migration goal models using the APIs provided by the Goal Modelling Editor (GME).

Note that the first two information exchange mechanisms support asynchronous messaging,

while the direct API invocation normally supports and imposes synchronous messaging.

Information exchange requires agreements on schema and format serialization of the data

exchanged. Additionally, in the case of direct API invocation, an agreement on the exposed

API and its specification is needed as well.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 45 of 61

A special case of communication happens between the Eclipse-based ARTIST tools, where

one tool requires a concrete feature implemented by another. In this case, we identify the

following interoperability mechanisms:

 Direct API invocation. This method allows the client tool to invoke directly a feature

implemented by the API of the provider tool.

 Eclipse extension mechanism. This method allows the client tool to use and/or

extend UI features in the Eclipse Workbench provided by the target tool.

These two mechanisms have been used by Eclipse-based ARTIST tools to communicate with

each other when direct communication is required or at least preferable.

In order to improve the user perception of the ARTIST suite as a quite seamlessly integrated

solution, we afford the development of additional integration features in the ARTIST Eclipse

suite, which were reported in [11]. In summary, these new integrated features are:

¶ An ARTIST Toolbar, which enables the launching of the external Web tools (i.e. MAT,

MPT, etc.) from the ARTIST suite, either using the internal Eclipse browser or an

external one.

¶ An ARTIST top menu bar, which enables the launching of available ARTIST wizards,

such as the wizard for creating a new migration project or the wizard to import

models from EA.

¶ An integrated ARTIST preference form, where integrated ARTIST tools can be

configured within the same preference sub-tree.

¶ Common user interface entry points to most of the integrated ARTIST tools,

particularly providing common access to most of the ARTIST toolbox, namely: MDT,

MUT, COT, CGT, etc.

4.2 ARTIST suite deployment UPDATE

Complementing the picture of the ARTIST suite in terms of technical interoperability

between tools, this section briefly positions every ARTIST tool according to the technological

framework required for its execution (see Figure 20). Additionally, this section describes how

the different tools of the ARTIST suite can be obtained and installed.

ARTIST tools are classified into:

¶ Web tools (SaaS), accessible through any compatible browser: the Methodology

Process Tool, the Maturity Assessment Tool, the Profiling Tool, the SbSp Certification

Tool and the ARTIST Marketplace.

¶ Java standalone tools, executed with a JVM: the Benchmarking Test Suite and the

Performance Stereotype Classification Tool.

¶ .NET Tools: Enterprise Architect (including its .NET C# add-ons and the ARTIST Bridge

to Eclipse).

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 46 of 61

¶ Eclipse RCP plugins: accessible within any compatible standalone Eclipse IDE35 : the

rest of the ARTIST tools.

Figure 20 Artist suite: tool deployment

The mechanisms supporting interoperability between these groups of ARTIST tools have

been discussed in the previous section.

The complete open source ARTIST Suite is available in the ARTIST web site36. For each tool in

the ARTIST Suite the web site provides its source code, its license and some documentation,

supporting installation and getting-started guides. Compiled binaries for ARTIST Suite tools

are located in the ARTIST Github public repository37.

A reference instance for each ARTIST web tool is available and maintained by its

development ARTIST organization. Nonetheless, any ARTIST practitioner can download the

source or binary bundles of these web tools, from the aforementioned ARTIST web site or

from the Github ARTIST public repository, and install them using their accompanying

installation instructions.

Java standalone applications can be downloaded as well and installed locally, following their

installation guides.

Similarly, .NET Tools can also be downloaded and installed.

A significant number of ARTIST suite tools have been developed as Eclipse plugins. Despite

this number, the Eclipse ARTIST suite can be installed as a single suite, from a unique ARTIST

update site. This approach enormously simplifies the installation of the suite, almost with a

35

 Current ARTIST tools (Eclipse-based ones) have been tested with Eclipse Kepler.
36

 http://www.artist -project.eu/open-source-package
37

 https://github.com/artist-project/ARTIST/tree/master/binary

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 47 of 61

single click. Nonetheless, the user is previously requested to install needed dependencies,

which cannot be managed automatically by the update site38.

At the time of writing the latest ARTIST Eclipse update site is available within one of the

public Github ARTIST repositories39, and corresponding complete release will be placed in

the ARTIST web site as well. The usage of this update site for installing the ARTIST Eclipse

Suite has been reported in the section 2.3 of [11].

38

 Although an Eclipse update site is capable to manage dependencies, technical difficulties impeded
us to achieve a proper management in current version. This issue will be solved in future releases.
39

 https://github.com/artist-project/ARTIST-Tooling/tree/master/eu.artist.updatesite

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 48 of 61

5 Conclusions UPDATE

This document provides a detailed description of the architecture of the entire ARTIST suite,

offering a conceptual, functional and technical view.

The ARTIST suite enables the realisation of the ARTIST methodology for the entire process of

migrating an application to the Cloud. This document describes the overall high-level

architecture of the ARTIST suite and provides a comprehensive and functional description of

all its constituting tools. Additionally, their functional behaviour was aligned with the

methodology, proving the entire coverage of its technical tasks.

The document also provides a deep analysis, both structural and behavioural, of each

package of tools (grouped by related functionalities), identifying consumed and provided

products, exchanged messages, mutual dependencies through required and exposed

interfaces, and the timeline activities conducted by the tools. This deeper analysis enables

the earlier identification of possible misalignments between the conceptualization, the

technical design and the implementation of the different tools. These potential issues have

been identified and addressed during the specification of this architecture, and incorporated

to the conceptual and technical design of each tool. This architecture also enables the

agreement on the artefacts produced and consumed by each tool that participated in

concrete tasks of the methodology: their semantics, data schema, serialisation format and

exchange protocol. Nevertheless, this document is not addressing the technical design of the

different ARTIST tools, as they were designed by their corresponding technical work-

packages. As these designs were reported, this document has been updated to incorporate

changes on the overall architecture that these designs have been requiring.

Moreover, a particular attention has been paid to identify and fix any potential misalignment

(concerning their interoperability) these individual technical designs have risen. Concerning

this, the architecture activity monitored and encouraged a coherent and seamlessly

integration between the tools, offering to the users a smooth usability.

Additionally, this document addresses the challenge of supporting (at tool-level) the

migration of both Java and .NET applications, and proposes a corresponding sound and

practical technical approach. This was made possible by the support of Sparx Enterprise

Architect (EA) (including some add-ons) during the model discovery and target generation

tasks. However, this approach may not be the completely suitable for some users involved in

the migration of .NET applications, since it requires the usage of diverse technologies,

including EA and the Eclipse-based ARTIST suite, in addition to the natural choice for .NET

development: Microsoft Visual Studio. The integration of EA and Eclipse Modelling Tools

required XMI-based model interoperability. Since EA and Eclipse used different

implementations of the UML meta-model and different versions of XMI, Sparx has been

required to implement this compatibility in its add-ons.

Overcoming these limitations was challenging, because the existing relevant baseline

support for open source MDE techniques are Eclipse-based. Nonetheless, ARTIST consortium

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 49 of 61

addresses the support for C# model discovery and target generation, seamlessly integrated

within the Eclipse-based ARTIST suite.

This overall ARTIST architecture has been used as the basis to ensure a smooth

interoperability between the different ARTIST tools during their conceptual and technical

design, and implementation. Significant efforts have been realized on the development of

the integrated ARTIST suite, conforming to this architecture specification, in the context of

WP9, as reported in [11], notably addressing the recommendation arisen in the second year

review. It has been also considered for the realization of the ARTIST use cases, as practical

instantiations of the ARTIST methodology.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 50 of 61

6 References

[1] D6.2.2 - ARTIST Methodology M24, ARTIST EU Project Report

[2] D6.3.3 - ARTIST methodology process framework, ARTIST EU Project Report

[3] D9.2 - Modelling language and editor for defining target specifications, ARTIST EU

Project Report.

[4] D7.2.1 ς Cloud services modelling and performance analysis, ARTIST EU Project Report

[5] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé and Frédéric Madiot. MoDisco: a Model

Driven Reverse Engineering Framework. In Information and Software Technology 56

(2014), doi: http://dx.doi.org/10.1016/j.infsof.2014.04.007, pp 1012-1032, 2014
[6] Jouault, Frederic, et al. "ATL: A model transformation tool." Science of Computer

Programming 72.1 (2008): 31-39.

[7] Acceleo: [http://www.eclipse.org/acceleo/]

[8] Object Management Group. Semantics of a Foundational Subset for Executable UML

Models (fUML), Version 1.0, February 2011. Available at:

http://www.omg.org/spec/FUML/1.0.

[9] Enterprise Architect: [http://www.sparxsystems.com/products/ea/]

[10] XML Metadata Interchange (XMI): [http://www.omg.org/spec/XMI/]

[11] D9.7 - Integrated Environment for maintaining / developing forward engineering

process, ARTIST EU Project Report

[12] D8.2.3 - Components for Model Discovery from Legacy Technologies, ARTIST EU Project

Report

[13] D8.3.3 - Mechanisms for Viewpoint Definition and View Extraction from Models of

Legacy Artifacts, ARTIST EU Project Report

[14] D5.2.3 - Business and Technical Modernization assessment tool, ARTIST EU Project

Report

[15] D5.3.3 - Technical Feasibility Tools, ARTIST EU Project Report

[16] D5.4.3 - Business Feasibility Tool, ARTIST EU Project Report

[17] D8.2.3 - Components for Model Discovery from Legacy Technologies, ARTIST EU Project

Report

[18] D8.3.3 - Mechanisms for Viewpoint Definition and View Extraction from Models of

Legacy Artifacts, ARTIST EU Project Report

[19] D9.6 - Automated Deployment Strategies, ARTIST EU Project Report

[20] D9.3 - Migration rules formalized as generic model transformations, ARTIST EU Project

Report

[21] D9.5 - Model-to-code transformations for specific cloud infrastructures, ARTIST EU

Project Report

[22] D11.3.2 - Methodology and Environment for evaluating migration success, ARTIST EU

Project Report

[23] D11.1 - Methodology and techniques for deriving test cases from models, ARTIST EU

Project Report

[24] D11.4.3 - ARTIST SbSp certification model, ARTIST EU Project Report

[25] D11.2 - Methodology and architecture for end user-based testing, ARTIST EU Project

Report

http://hal.inria.fr/hal-00972632
http://hal.inria.fr/hal-00972632
http://dx.doi.org/10.1016/j.infsof.2014.04.007
http://www.omg.org/spec/FUML/1.0
http://www.omg.org/spec/XMI/

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 51 of 61

[26] D10.4.1 - Methodology and techniques for artefact evolution support, ARTIST EU Project

Report

[27] D10.5.2 - Inventory of common general-purpose artefacts, ARTIST EU Project Report

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 52 of 61

7 APPENDIX A: Exposed Interfaces UPDATE

7.1 Tools for Migration Feasibility Assessment

In Figure 21 Migration feasibility assessment tools and interfaces¡Error! No se encuentra el

origen de la referencia., we describe these interdependencies between tools in this package

in terms of provided and requested interfaces. As so, MAT conceptually provides an iMAT

interface that contains two operations:

provideMATReport is used by MAT to provide its report to other tools (i.e. TFT, BFT, MPT,

etc.). In practice, this information exchange is implemented through the user workspace. As

the concrete report to provide is selected by the user, no report identifier is required in this

operation signature. In order to obtain just the migration goals for the application, other

tools can use the provideMigrationGoals method

Similarly, both TFT and BFT provide their corresponding interfaces, with similar operations to

offer their reports:

ARTIST modernization assessment tools also interact with other ARTIST tools, as shown in

Figure 21¡Error! No se encuentra el origen de la referencia..

The MAT report is consumed by: i) the Non-Functional Requirement Verification Tool

(NFRVT), during the post-migration phase (notably the Non-Functional analysis of initial

situation) and ii) the Requirements Specification Tool (RST), during the migration phase (the

migration goals).

Interface iBFT{
+ provideBFTReport(): BFTReport

}

Interface iTFT{
+ provideTFTReport(): TFTReport

}

Interface iMAT{
+ provideMATReport(): MATReport
+provideMigrationGoals(URI): List<MigrationGoal>

}

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 53 of 61

Figure 21 Migration feasibility assessment tools and interfaces
40

40

 In this type of structural diagrams, to keep them as simpler as possible, we focus on the provided and required interfaces by the package components. We do not depict
how components of other packages use the interfaces exposed by the components of this package.

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 54 of 61

TFT requires PSM41s/PIMs obtained via the Model Understanding Toolbox42, in order to

identify and analyse components to be migrated. TFT analysis relies on these component

models, which can be modified by the user, for instance to add or delete components or

express migration requirements, using the Goal Modelling Editor43. These conceptual

dependencies are depicted in Figure 2. Their corresponding interface interactions are

depicted in ¡Error! No se encuentra el origen de la referencia.. Conceptually, TFT uses the

iMUT::provideAppComponentModel operation to obtain a model of the existing application.

In practice, this interaction is managed by a user interaction through the Eclipse IDE

workbench. TFT also retrieves components requirements expressed in the model of the

existing application, using the iGME::provideRequirementsForComponent method.

7.2 Tools for ARTIST Methodology customisation

Figure 22¡Error! No se encuentra el origen de la referencia. depicts the interfaces used by

this tool to interoperate with other package tools. As these interfaces are only exposed by

other packages, there are no new interfaces to introduce in this section.

Figure 22 Interfaces used by methodology customisation package

7.3 Tools for Target Environment Specification

In Figure 23¡Error! No se encuentra el origen de la referencia., we describe the

interdependencies between tools in this package in terms of provided and requested

interfaces. Thus, BTS conceptually provides an iBTS interface that contains some operations:

41

 Platform Specific Model
42

 Described in the Application Discovery and Understanding package
43

 Described in the Modernization package

Interface iBTS{
+ installBenchmark(Benchmark): void
+ provideCloudEnvironmentModel(URI): CloudEnvironmentModel

}

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 55 of 61

The installBenchmark method installs benchmarks on the reference environment required by

the PT. The provideCloudEnvironmentModel method provides benchmarking scores and the

corresponding Cloud environment models, which are stored in the ARTIST repository.

PT provides an iPT interface that contains some operations:

The provideComponentRuntimeProfile method provides the component runtime profile

obtained by profiling the application in the reference platform. Similarly, the

provideBenchmarkRuntimeProfile method provides the benchmark profile obtained by profiling

the benchmarks.

Figure 23 Target environment specification interfaces

PSCT provides an iPSCT interface that contains one operation:

The providePerformanceStereotypeClassification method returns the component classification

that corresponds to the nearest benchmark. PSCT uses artificial intelligent methods44 to

classify the applications into the benchmarks.

44 Some IA methods are being considered in task 7.4, started at M12, such as artificial neural
networks, support vector machines, nearest neighbours, etc.

Interface iPSCT{
+ providePerformanceStereotypeClassification(URI): PerformanceStereotypeClassification

}

Interface iPT{
+ provideComponentRuntimeProfile(URI): RuntimeProfile
+ provideBenchmarkRuntimeProfile(URI): RuntimeProfile

}

D6.4.2 ς ARTIST Integrated Architecture (M33) Version: v1.0 ς Final, Date: 30/06/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 56 of 61

7.4 Tools for Application Discovery and Understanding

In Figure 24¡Error! No se encuentra el origen de la referencia., we describe the

interdependencies between tools in terms of provided and requested interfaces. Thus, MDT

conceptually provides an iMDT interface that contains two operations:

The provideAppPSM method provides a low level PSM for an existing application referenced

by URI. In practice, the URI could be the path (e.g. within the local workspace) to the

application project, as imported in Eclipse. The provideAppSourceForModelElement method

provides the source code corresponding to a discovered model element, and it is intended

to promote code reusability by the RTT.

Figure 24 Application Discovery and Understanding Interfaces

Similarly, MUT provides the following interface:

The provideAppPIM method provides a high level PIM for an existing application given an

application PSM referenced by URI. In practice, the URI could be a reference to PSM

obtained previously by the MDT. As this is an implementation choice, we describe iMUT

interface in a generic and conceptual way. To simplify, this method is generically described

as it provides a single PIM. Conceptually, this PIM can include multiple views, representing

different aspects of the application. Nonetheless, this method can be understood in a more

generic way, producing several PIMs describing an application referenced by the URI. The

provideAppTCModel method provides a test case model for a given application, as required

by tools in the validation package.

Interface iMUT{
+ provideAppPIM(Model): Model
+ provideAppComponentModel(Model): Model

}

Interface iMDT{
+ provideAppPSM(SourceCode): Model
+ provideAppSourceForModelElement(ModelElement): String

}

