
D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 1 of 39

ARTIST

FP7 - 317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

Deliverable D11.1

Methodology and techniques for deriving test cases from
models

Editor(s): Javier Troya
Martin Fleck
Patrick Neubauer

Responsible Partner: TUWIEN

Status-Version: Final Version ς v1.0

Date: 31/03/2015

Distribution level (CO, PU): PU

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 2 of 39

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable:
Methodology and techniques for deriving test
cases from models

Due Date of Delivery to the EC: 31/03/2015

Workpackage responsible for
the Deliverable:

WP11

Editor(s):

Javier Troya (TUWien)

Martin Fleck (TUWien)

Patrick Neubauer (TUWien)

Contributor(s): -

Reviewer(s): Jesús Gorronogoitia

Approved by: All Partners

Recommended/mandatory
readers:

WP 6, WP 7, WP 8, WP 9

Abstract: This deliverable presents a prototype to allow the
behavioural comparison of the original and the
migrated applications at model level. To this end,
first the literature is reviewed for related
approaches. Then, it is explained how generic test
cases at model level are provided in the prototype,
whose elements have to be mapped to actual
elements of a model in order to instantiate and
latter execute the test cases.

Keyword List: Generic test case, specific test case, activity
diagrams, system under test, correspondence
model, JUnit, M2M transformation

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 3 of 39

Licensing information: Generally EPL (open source), indicated otherwise.

The document itself is delivered as a description
for the European Commission about the released
software, so it is not public.

Document Description

Document Revision History

Version Date

Modifications Introduced

Modification Reason Modified by

v0.1 13/02/2015 Table of Contents TUWIEN

v0.2
20/02/2015 Related work and rationale for the

approach added
TUWIEN

v0.3 05/03/2015 Explanation of the implementation TUWIEN

v0.4 10/03/2015 Introduction added TUWIEN

v0.5 11/03/2015 Package information added TUWIEN

v0.6 13/03/2015
Last version ready for internal
(TUWIEN) review

TUWIEN

v0.7 16/03/2015 Internal corrections performed TUWIEN

v1.0 24/03/2015 Suggestions by reviewer applied TUWIEN

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 4 of 39

Table of Contents

Table of Contents .. 4

Table of Figures ... 5

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction .. 9

1.1 About this deliverable ... 9

1.2 Fitting into overall ARTIST solution ... 10

1.3 Main innovations ... 11

1.4 Document structure .. 11

2 Related Work and Rationale Behind the Approach .. 12

2.1 Existing categorization of MBT approaches .. 12

2.1.1 Model-based testing process .. 12

2.1.2 Building a model .. 12

2.1.3 Choosing test selection criteria ... 12

2.1.4 Creating a test case specification .. 13

2.1.5 Generating test cases. ... 13

2.1.6 Executing test cases .. 13

2.1.7 Analyzing results .. 14

2.2 Rationale for following our approach ... 14

3 Implementation ... 16

3.1 Functional Description .. 16

3.1.1 Activity Diagrams, fUML and JUnit .. 16

3.1.2 Generic Test Cases .. 16

3.1.3 Converting a Generic Test Case into a Specific Test Case 18

3.1.4 Comparing Specific Test Cases in the Original and Migrated Applications 20

3.2 Technical Description .. 20

3.2.1 Prototype Architecture ... 20

3.2.2 Components Description ... 21

3.2.2.1 Correspondences Metamodel and Model (Artefacts no 1 & 2) 21

3.2.2.2 Behavioural Model ς Activity Diagrams (Artefacts no 3 & 4).......................... 24

3.2.2.3 M2M Transformation & Abstract Test Suite (Artefact no 5)........................... 26

3.2.2.4 Behavioural Model ς Activity Diagrams with Test Suite integrated (Artefacts
no 6 & 7) 26

3.2.2.5 Comparison of executions of Test Cases (Artefact no 8) 26

3.2.2.6 Report Printing (Artefact no 9) .. 27

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 5 of 39

3.2.3 Extension of the prototype ... 29

3.3 Technical Specifications .. 30

4 Delivery and Usage .. 31

4.1 Package Information ... 31

4.2 User Manual .. 31

4.2.1 Executing the ATL model-to-model transformation ... 31

4.2.2 Executing the Comparator of executions of Test Cases 35

4.3 Licensing Information .. 36

4.4 Download .. 36

5 References ... 39

Table of Figures

FIGURE 1 ς MIGRATION PROCESS OF ARTIST .. 10
FIGURE 2 ς GENERIC TESTCASE1 .. 17
FIGURE 3 ς GENERIC TESTCASE2 .. 17
FIGURE 4 ς GENERIC TESTCASE3 .. 18
FIGURE 5 ς TESTCASE1_TESTLOGIN SPECIFIC TEST CASE IN THE PETSTORE APPLICATION 18
FIGURE 6 ς TESTCASE2_TESTFINDITEM SPECIFIC TEST CASE IN THE PETSTORE APPLICATION 19
FIGURE 7 ς TESTCASE3_TESTCREATECUSTOMER SPECIFIC TEST CASE IN THE PETSTORE APPLICATION 19
FIGURE 8 ς DIAGRAM OF THE OVERALL PROCESS OF THE PROTOTYPE .. 20
FIGURE 9 ς METAMODEL FOR THE CORRESPONDENCES AMONG GENERIC TEST CASES AND SPECIFIC ACTIVITIES

AND PARAMETERS .. 21
FIGURE 10 ς VIEW OF THE CORRESPONDENCES_MODEL_PESTORE CONTAINING THE TESTCASE1_TESTLOGIN

TEST CASE AS WELL AS THE MAPPING WITH THE GENERIC TEST CASE .. 23
FIGURE 11 ς VIEW OF THE CORRESPONDENCES_MODEL_PETSTORE CONTAINING THE

TESTCASE2_TESTFINDITEM TEST CASE .. 23
FIGURE 12 ς VIEW OF THE CORRESPONDENCES_MODEL_PETSTORE CONTAINING THE

TESTCASE3_CREATECUSTOMER TEST CASE ... 24
FIGURE 13 ς EXCERPT OF ACTIVITY DIAGRAM FOR THE PETSTORE ... 25
FIGURE 14 ς FLOW CHART OF THE M2M TRANSFORMATION .. 27
FIGURE 15 ς RESULT PRINTING FOR THE COMPARISON OF TEST CASES IN THE ORIGINAL AND MIGRATED

APPLICATIONS ... 29
FIGURE 16 ς JUNIT VIEW AFTER THE EXECUTION OF THE COMPARISON OF TEST CASES 29
FIGURE 17 ς SELECTING WORKING SETS AS TOP LEVEL ELEMENTS ... 31
FIGURE 18 ς FOLDERS AND FILES CONTAINED IN THE EU.ARTIST.POSTMIGRATION.MBT.INSERTTESTCASES

PROJECT ... 32
FIGURE 19 ς CONTENT OF THE INTEGRATETESTCASES.LAUNCH LAUNCHER .. 33
FIGURE 20 ς EXECUTING THE M2M TRANSFORMATION .. 34
FIGURE 21 ς CONFIGURATION WIZARD FOR THE M2M TRANSFORMATION ... 35
FIGURE 22 ς FOLDERS AND FILES CONTAINED IN THE

EU.ARTISTΦόΧύΦΦMBT.MODELEXECUTION.FUMLDEBUG.EVAL.EXTENSIONS PROJECT 35
FIGURE 23 ς CONTENT OF CONFIG.PROPERTIES .. 36

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 6 of 39

FIGURE 24 ς IMPORTING THE PROJECTS OF THE MODEL BASED TESTER .. 37
FIGURE 25 ς STARTING TO CREATE WORKING SETS ... 38
FIGURE 26 ς CREATION OF THE MODEL-BASED_TESTER WORKING SET ... 38

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 7 of 39

Terms and abbreviations

ATL Atlas Transformation Language

EC European Commission

DSL Domain-Specific Language

fUML Foundational UML

ISO International Organization for Standardization

M2M Model to Model

M2T Model to Text

MBT Model-Based Testing

MDE Model-Driven Engineering

MUT Model Understanding Toolbox

OCL Object Constraint Language

PIM Platform Independent Model

PSM Platform Specific Model

SbSp Service based Software providers

SUT System Under Test

T Task

UML Unified Modeling Language

WP Work Package

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 8 of 39

Executive Summary

In the context of the ARTIST project, the migration is performed based on model-driven
engineering techniques. Thus, the original software is reverse-engineered to obtain a model-
based representation in terms of platform-specific models. These models are transformed into
more abstract models, such as UML models, which describe the original application in a
platform-independent way. The actual migration is performed by applying model
transformations and code generators to create the migrated software.

When a software is migrated to new technologies or platforms, one important task is to ensure
the quality of the software after the migration has been performed. In particular, two aspects
have to be considered: it has to be evaluated whether the expected improvements of the
migration have been accomplished and whether the migrated software still meets the original
specification. In this document, we focus on the latter aspect. Here, it is investigated whether
the migrated software still behaves the same as the original one in terms of functional
requirements. Therefore, the behavioural equivalence of the original and the migrated
software has to be ensured. More precisely, and since models are the central artefacts in the
migration in the context of ARTIST, we use such models to also drive the behavioural
equivalence at model level, which is complemented with the end-user based testing
component.

In this document, it is presented and explained the component to realize the behavioural
comparison, at model level, using the activity diagrams that are obtained in the migration. In a
migration process, the complete software is not modernized, but only specific parts of it.
Therefore, the prototype focuses on checking the behavioural equivalence only of those parts
that have changed. To do so, the domain knowledge of the user is utilized, and the user
becomes a key part in the behavioural equivalence testing, since he/she has to decide which
tests must be performed. This also allows to avoid the problem of the state space explosion
when defining test cases for software.

The errors that are detected at model level, regarding functional equivalence of the original
and migrated applications, are cheaper to repair than those detected after the application has
been deployed. A simple reason for this is that, having the application specified in a model
level, we have not put any effort yet on deploying it, so the respective changes can be
performed in the model before the code of the application is obtained. After having checked
the functional equivalence in model level, this does not necessarily mean that the functional
behaviour of the applications at code level is also guaranteed, but at least a part of its
functionality has been checked, what is then complemented with the end-user based testing
component.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 9 of 39

1 Introduction

When a software is migrated to new technologies or platforms, one important task is to ensure
the quality of the software after the migration has been performed. In particular, two aspects
have to be considered: it has to be evaluated whether the expected improvements of the
migration have been accomplished and whether the migrated software still meets the original
specification. In this document we focus on the latter aspect. Here, it is investigated whether
the migrated software still behaves the same as the original software in terms of functional
requirements. Therefore, the behavioural equivalence of the original and the migrated
software has to be ensured. More precisely, this document focuses on the behavioural
equivalence at model level, what is complemented with the end-user based testing prototype
presented in D11.2 [1].

During the migration of the software, we need dedicated test cases to verify the behavioural
equivalence of the original software and the migrated software. As the behaviour of the
original software, as well as of the migrated one, is described using models, we make use of
these models for testing, instead of reasoning about their behaviour on code level. In the
domain of model-driven engineering and testing, we may distinguish between two distinct
techniques: model testing and model-based testing. Model testing refers to activities for
ensuring the quality of the models themselves (e.g., using model simulation), whereas the
term model-based testing (MBT) refers to applying models for designing and generating
software artefacts with the purpose of testing a software application in general. Thus, model
testing and MBT differ concerning the artefact under test. In model testing, the artefact under
test is the model, and in model-based testing, models are used to verify the quality of the
system under test (SUT). In this document, we present an approach that mixes concepts of
both terms. On the one hand, it is the model what we use for testing and on which we realize
model simulations based on fUML [2]. Furthermore, generic test cases are provided and also
defined at model level. On the other hand, we provide a solution that uses generic test cases
and user domain knowledge to produce specific test cases for specific SUT.

1.1 About this deliverable

Given that the original software is a valid implementation of the reverse-engineered original
platform-specific model(s) (PSM), as well as of the derived platform-independent model(s)
(PIM), we can use the PSM or PIM as the sole specification of the expected behaviour of the
migrated software. Thus, by testing whether the behaviour is maintained in the migrated
PIM/PSM, we may verify indirectly but validly whether the original and the migrated software
behave equivalently with respect to the aspects that are specified in the models. Of course,
testing only the aspects specified in these models does not account for verifying the full
equivalence of both systems, which would be undecidable in most of the cases1. For this
reason, this approach is complemented with the end-user based testing approach. In any case,
focusing only on the aspects that are specified in the models may allow us to overcome the
undecidability issue and to concentrate the test endeavours on those aspects that are strictly
relevant in a specific migration scenario. Thus, by specifying in the models only those aspects
that are relevant with respect to the migration scenario, the user is empowered to balance
between aspects to be tested and not relevant aspects. In fact, the domain knowledge of the
user about the application comes in handy for the approach we present. This approach is also
in line with the general approach of ARTIST: in a migration, not the entire software is affected,

1
 In computability theory and computational complexity theory, an undecidable problem is a decision

problem for which it is known to be impossible to construct a single algorithm that always leads to a
correct yes-or-no answer.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 10 of 39

but only those parts that need to be migrated in order to adapt the software to the cloud.
Therefore, only the migrated parts are reflected explicitly in the models for the migration and
these are also the relevant parts that need to be tested regarding the behavioural equivalence.

This deliverable is tailored at presenting and describing the prototype for the behavioural
comparison of the original and migrated applications, at the model level. We explain how
concepts and ideas from model testing and model-based testing are utilized, and the steps
needed to execute the prototype.

1.2 Fitting into overall ARTIST solution

In the context of the ARTIST project, the migration is performed based on model-driven
engineering techniques [3]. Thus, the original software is reverse-engineered to obtain a
model-based representation in terms of platform-specific models. These models are
transformed into more abstract models, such as UML models, which describe the original
application in a platform-independent way. The actual migration is performed by applying
model transformations and code generators to create the migrated software.

Figure 1 ς Migration Process of ARTIST

To be more specific, the overall migration process in ARTIST is depicted in Figure 1, with a
special focus on WP11 tasks, and can be briefly summarized as follows. In a first step, the
original software is analysed to assess technical and non-technical consequences of possible
migration strategies (WP5). This step results in well-defined migration goals constituting the
input for the decision-making on how the migration is performed in the next steps (WP8 and
WP9). After the migration has been performed, we have to ensure a high quality of the
migrated software and evaluate the success of the migration. Therefore, we propose an
iterative approach. First, we test the behavioural equivalence of the original software and the
migrated software. This is done using two different approaches: a test case based approach
(T11.1) and an end-user based approach (T11.2), where the focus of this document is the
former. Both approaches are complementary: since the test coverage at model level is smaller
than the coverage at software level, the test case based approach, focusing on checking the
functional equivalence in a model level, is complemented with the end-user based approach,
executed after the migrated application has been deployed. If we encounter any issues
concerning the expected behaviour, the issue is reported back to the migration step in order to
enable the developers performing the migration to adjust the migration and correct the issue.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 11 of 39

After the original software and the migrated software have been determined to behave
equivalently, we may proceed with validating whether the migration goals defined are reached
(T11.3). If also the goals of the migration have been fulfilled by the current version of the
migrated software, we perform the certification of the migrated software product. The Service
based Software providers (SbSp) certification model checks the application against a set of
best practices and standards (e.g., ISO20000 or ISO27000) considering the three aspects,
finance, process and application (T11.4).

1.3 Main innovations

A central aspect in the prototype presented in this deliverable is the knowledge of the user
about the application that is being migrated. In this sense, and due to the lack of test cases in
the applications of the use case providers in the ARTIST project, the user also takes part on the
testing process as we will explain throughout the document. Another important aspect of our
approach is that we use the artefacts at model level as the sole specification of the expected
behaviour of the migrated models and the migrated software, since the original software is in
fact a valid implementation of the reverse-engineered models. Another reason to stay at this
level is that it may not be feasible to provide a running instance of the original system due to
some reasons such as its age, so there may be a lack of engineers with the expertise to deploy
or execute such systems. For this reason, representing the software as models allows us to use
model simulation techniques to simulate the behaviour of the system.

The use of models also allows us to avoid the problem of the state space explosion2 [4]. In fact,
since the test generation is performed via criteria specified by the user, we focus only on
testing the important aspects of the system. Furthermore, detecting flaws at model level,
before the system is deployed on production, reduces the time and costs for the design-
development-deployment-testing life-cycle and, more importantly, it improves the quality of
systems on production. On the other hand, detecting flaws in production may have a strong
negative impact on the business.

1.4 Document structur e

After the introduction, in the rest of the document we explain the functionality of the
prototype as well as its implementation. First, in Section 2 we present some related work in
the field of model-based testing. In this sense, in Section 2.1 we describe how these
approaches are categorized in the literature. Then, based on the information presented, in
Section 2.2 we argue about the rationale for the approach we present. Section 3 is devoted to
the explanation of the prototype. It is divided in three main sections: in Section 3.1 we
introduce some concepts that are needed in order to understand the functionality of the tool,
while in Section 3.2 we explain all the parts of the prototype and how they are linked together
and finally, in Section 3.3, we describe the technical specifications of the prototype. Finally, in
Section 4 we explain how the prototype has been packaged as well as the necessary steps to
execute it. Moreover, we present licensing information and download instructions.

2
 Behavioural verification usually employs the generation of a state/transition diagram, generally called

the state space in one or another form. A problem of these state spaces is that they often become too
large to be verified even when using clever verification algorithms and very powerful computers. This
problem is called the state space explosion problem.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 12 of 39

2 Related Work and Rationale Behind the Approach

In this section we present some related work in the area of model-based testing, and explain
the rationale for choosing the approach presented throughout this document.

2.1 Existing categorization of MBT approaches

Several outstanding and comprehensive categorizations in the field of MBT have been recently
proposed by researchers. Thus, we combine existing ones to provide one common picture of
MBT concepts. We choose to follow the rather generic MBT process proposed by Utting et al.
[5] and align existing categorizations with each step of the MBT process. In the following, we
give a brief overview of this generic MBT process and provide a detailed description of every
step including existing categorizations of approaches in a dedicated section for each step.

2.1.1 Model -based testing process

Utting et al. [5] proposed a taxonomy of MBT approaches together with a generic MBT
process. For this document, we extend this process by an explicit test analysis step, as it is
often found in other test process descriptions [6], [7], [8], [9]. The resulting process contains
the following six steps:

1. Build a model of the system under test (SUT) from a specification
2. Choose test selection criteria to specify the testing purpose
3. Create a test case specification based on these criteria
4. Generate test cases to satisfy the test case specification
5. Run the test cases against the SUT
6. Analyze the results of the test cases

In the following sections each of these steps is discussed in more detail and existing
categorizations are described. Please note that due to the high number of available literature
in this field, we only give an overview in this document. For more details on a specific
technique or approach, we kindly refer the interested reader to the referenced literature.

2.1.2 Building a model

The first step in MBT is to build a model of the SUT. This so-called test model represents the
intended behaviour and is later used to derive concrete test cases. It is also possible to derive a
test model from the existing development model or code instead of using a specification, but
in such a case it is possible that errors are propagated from the existing system or
development model into the test cases.

2.1.3 Choosing test selection criteria

After the model has been built, the test selection criteria have to be chosen. These criteria
represent the test purpose of the testing process and can be stated formally or informally [10].
In model-based testing the criteria will guide the generation of test cases in the testing tool. In
white-box testing they are additionally used for measuring the adequacy of a test suite and
deciding when to stop testing [9]. Utting et al. [5], [9] defined the following six families of test
selection criteria that can be used in MBT:

¶ Structural model coverage. These criteria are defined on the structure of the model
(e.g., nodes and arcs of a transition-based model or conditional statements in a state-
based model) [5].

¶ Data coverage. These criteria help to find a small subset of values from a larger data
space by means of equivalence classes. The assumption is that a representative of an

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 13 of 39

equivalence class behaves the same as all other values from that class in terms of their
failure detection ability [5].

¶ Requirements coverage. In some cases, requirements can be related directly to
specific model elements and therefore coverage criteria can be used to test these
requirements [5]. To manage the relation between requirements and model elements,
traceability information should be used, e.g. in form of a traceability matrix.

¶ Ad hoc test case specification. It is also possible to create test case specifications
explicitly using a formal notation. This specification determines exactly which test
cases are created by the test case generator [5].

¶ Fault-based criteria. Fault-based criteria are mostly applicable to SUT models to
measure the fault-finding power of the test suite [9]. One of the most common fault-
based criteria is mutation coverage, where the model is modified and test cases are
generated which can distinguish between the mutated model and the original model.
The assumption is that there is a correlation between faults in the model and faults in
the SUT, and between mutations and real-world faults.

¶ Random and Stochastic. These criteria include a random approach and the use of
statistical distributions [9]. Random and stochastic criteria are mostly applicable to
environment models since they contain the probabilities of actions and usage of the
SUT [5].

2.1.4 Creating a test case specification

As stated in the previous section, the test selection criteria can be defined informally.
Therefore it is necessary to create a formal test case specification, which defines how to derive
a test suite [10]. Often tools are able to transform the given test case selection criteria into the
necessary specification internally.

2.1.5 Generating test cases.

To create test cases, a generator takes the formal test case specification and the test model as
input and produces a test suite (a set of test cases). Utting et al. [5] describe six technologies
that can be used by a test case generator to generate tests from a model.

Random generation of tests is done by sampling the input space of a system. Search-based
algorithms for model-based test generation include graph search algorithms such as node or
arc coverage algorithms as well as other search-based algorithms such as meta-heuristic
search, evolutionary algorithms and simulated annealing. Model-checking is a technology for
verifying or falsifying properties of a system. Symbolic execution runs an (executable) model
not with single input values but with sets of input values. Deductive theorem proving uses
proves that support the generation of witness traces or counterexamples. Finally, constraint
solving is useful for selecting data values from complex data domains, e.g., in combinatorial n-
wise testing.

2.1.6 Executing test cases

After the test case generation, the set of abstract test cases needs to be executed. When
making abstract test cases executable, it is often necessary to concretize the input for the SUT
and abstract the output from the SUT to be able to compare them. While the abstract test
cases can be independent from the programming language and execution environment of the
SUT, the concrete test cases must be specific to the programming language and execution
environment.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 14 of 39

2.1.7 Analyzing results

Each test case runs against the SUT and yields a verdict after it has been performed. This
verdict can either be a pass in case of a positive result, a fail in case of a negative result and
inconclusive if the result cannot be determined.

2.2 Rationale for following our approach

In this document, we present a prototype for testing the behavioural equivalence of the
original and migrated applications at model level. As mentioned in the introduction, we
present an approach that mixes concepts of model testing and model-based testing. On the
one hand, we define and provide generic test cases at model level and we simulate and test
the model. On the other hand, we provide a solution for producing specific test cases for the
specific SUT out of the generic test cases and the domain knowledge of the user.

In our approach, the six steps for the model-based testing described in Section 2.1.1 are as
follows:

¶ The models are the activity diagrams reverse-engineered in WP8 and the ones
produced in WP9, as we see in Section 3.2.2

¶ We can say that the test selection is structural, since the generic test cases are defined
according to the elements appearing in activity diagrams, as described in Section 3.1.2.

¶ The creation of specific test cases is driven by the user, who has domain knowledge of
the application and of what parts are being modernized, as explained in Section 3.1.3
and Section 3.2.2.1.

¶ The generation of such test cases is done automatically after the user specifies
correspondences among the provided generic test cases and artefacts in the
application.

¶ The produced specific test cases are run against the SUT (i.e., the activity diagrams of
the original and migrated applications), as explained in Section 3.2.2.5. Please note
that the SUT can be any behavioural model expressed with activity diagrams. This
means that the models can have a higher or lower level of abstraction, and they can,
consequently, be either PSMs or PIMs.

¶ Finally, it is analysed whether the results provided in both sides (original and migrated
applications) are the same, as explained in Section 3.2.2.6.

As already mentioned, in our prototype we have decided to focus on the behavioural
comparison between the original and migrated applications in a model level (as the
approaches in model testing do). We have several reasons that back up such decision:

¶ As mentioned in the introduction, given that the original software is a valid
implementation of the reverse-engineered PSM, as well as of the derived PIM
(provided there are means to derive such PIM), we can use either the PIM or the PSM
as the sole specification of the expected behaviour of the migrated software. Of
course, testing only the aspects specified in the PSM or PIM does not account for
verifying the full equivalence of both systems, which would be undecidable in most of
the cases. However, focusing only on the aspects that are specified in the PSM/PIM
may allow us to overcome the undecidability issue and to concentrate the test
endeavours on those aspects that are strictly relevant in a specific migration scenario.
Also, the prototype presented in this deliverable is complemented with the end-user
based testing approach described in D11.2 [1].

¶ When migrating and modernizing an application, it may happen that the original
application is no longer executable or it cannot be integrated with modern testing

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 15 of 39

technologies. This does not mean that the code of the application is not completely
available, but it may not be working any longer because it is obsolete or it may only
work in very old environments. Consequently, it may not be feasible to provide a
running instance of the original system and there may actually be a lack of engineers
with the expertise to deploy or execute such systems. In this case, the reverse-
engineered models can abstract the application from the aspects that make it not
work. Furthermore, if the application is not executable, then we cannot execute test
cases in the SUT being the software, either, as most MBT approaches suggest.
However, we can execute the reverse-engineered models using fUML and integrate
the test cases in such models.

¶ None of the current ARTIST use cases provide test cases in the original application. This
discards the possibility of reverse-engineering such test cases and propagating them to
the migrated application.

¶ We use models as test artefacts to avoid the problem of the state space explosion.
Besides, to further reduce the state space, we want to guide the test generation via
user-specified criteria that allows us to focus only on certain aspects. In fact, as
mentioned before, migrating an application does not mean changing it completely. In
more detail, only specific parts of the application are modernized and adapted for the
cloud. Since the user of the application is an active part in the process of migrating the
application, we also consider that he/she must be an active part in checking the
behavioural equivalence between the original and migrated applications, since he/she
may have knowledge of which parts have changed and, consequently, which parts
should be object of the comparison study. This is why we leave to the user the task of
defining a correspondences model, as described in Section 3.

¶ In any software generation process, the errors detected in the application model,
before the generation of code, are less expensive to repair [11]. Similarly, during the
migration process in ARTIST, code of the migrated application will only need to be
generated in case behaviour is preserved in model level.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 16 of 39

3 Implementation

In this section we explain the prototype we have developed. It is divided in three main
sections. In Section 3.1 we introduce some concepts that are needed in order to understand
the functionality of the tool. Then, in Section 3.2 we explain all the parts conforming the
prototype and how they are linked together. Finally, in Section 3.3 we present the technical
specification of the prototype.

3.1 Functional Description

For presenting our approach, in this section we briefly explain its functionality. Firstly, we
introduce the concepts of activity diagrams, fUML and JUnit, since they are key parts of the
functionality of the prototype. Then, we present how the provided generic test cases look like,
and also show specific instances of such test cases. Finally, we briefly describe how the
behaviour in the original and migrated applications are compared.

Later, in Section 3.2, we emphasise on the implementation of the prototype.

3.1.1 Activity Diagrams , fUML and JUnit

The behavioural comparison performed with our approach is realized at model level. In
particular, we need both the original and migrated applications to have their behaviour
represented as UML activity diagrams. Activity diagrams are graphical representations of
workflows of stepwise activities and actions with support for choice, iteration and
concurrency. The activities in the diagram represent operations of the system. An example of
an excerpt of an activity diagram for the Petstore application is shown in Figure 13.

Foundational UML3 (fUML) is a subset of the standard UML for which there are standard,
precise execution semantics. This subset includes the typical structural modelling constructs of
UML, such as classes, associations, data types and enumerations. Furthermore, it includes the
ability to model behaviour using UML activities, which are composed from a rich set of
primitive actions. A model constructed in fUML is therefore executable in exactly the same
sense as a program in a traditional programming language, but it is built with the level of
abstraction and richness of expression of a modelling language.

JUnit4 is a simple, open source framework to write repeatable tests. It is an instance of the
xUnit [12] architecture for unit testing frameworks. JUnit includes assertions for testing
expected results, test fixtures for sharing common test data and test runners for running tests.

3.1.2 Generic Test Cases

With our approach, we aim at defining and providing generic test cases with the prototype
that can then be used in any application. In fact, the idea is that after the user uses his/her
knowledge to map the concepts of such test cases with the concrete applications, the test
cases are automatically included in the application.

These generic test cases that are provided in the prototype cannot be executed anyhow
without a concrete application, so they actually represent templates or patterns for test cases.
When they are included in the application, they are materialized, i.e. instantiated, in the form
of activity diagrams. For this reason, we now graphically show some of these generic test cases
also in the form of activity diagrams.

3
 http://www.omg.org/spec/FUML/1.1/

4
 http://junit.org/

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 17 of 39

Figure 2 shows our first generic test case. We can see the definition of two actions
representing activities (activity1 and activity2) and another action that produces a value
(value1). The output of activity1 and the value produced in value1 are the inputs for activity2,
while the output of the latter is returned as parameter, namely result1.

Figure 2 ς Generic TestCase1

The second generic test case is shown in Figure 3. It is similar to the previous one. However,
now, the first input of activity2 is not the output of activity1, but a specific property of the
object obtained as output in activity1. Such property is obtained by the action getProperty1.
Finally, the output of activity2 is returned as parameter in result1.

Figure 3 ς Generic TestCase2

The last generic test case shown, in Figure 4, is simpler that the previous two. In this test case,
there are two actions producing values, value1 and value2, which are the inputs for activity1.
Finally, the output of such activity is returned in parameter result1.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 18 of 39

Figure 4 ς Generic TestCase3

3.1.3 Converting a Generic Test Case into a Specific Test Case

As mentioned before, a generic test case has to be included in a specific application in order to
make the former executable. In this document we use the Petstore as a reference example.
With our approach, after the user specifies the mapping between the generic test cases and
his/her application, the generic test cases are transformed into specific activity diagrams. The
way to specify such mappings is explained in Section 3.2. When a generic test case is included
in a specific application, we say that the test case has been instantiated.

Figure 5 ς TestCase1_TestLogin specific test case in the Petstore application

Figure 5 displays an instance of the TestCase1 generic test case shown in Figure 2 for the
Petstore application. In this case, we can see how activity1 has been mapped to the
loginScenario activity, while activity2 has been mapped to the equals activity. As for the
value1, it has been assigned the integer 1, so such integer is produced by this action. The
purpose of this test case is to check the value that is returned by the loginScenario activity
when the first user logs in. In this sense, it is compared if such value is 1.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 19 of 39

Figure 6 ς TestCase2_TestFindItem specific test case in the Petstore application

An instantiation of the TestCase2 generic test case shown in Figure 3 is displayed in Figure 6.
The purpose of such test case is to test the behaviour of the application when looking for an
Item that has been previously stored. Specifically, the test expects that an Item whose name is
Poodle is found. In this mapping, activity1 is mapped to findItemScenario, while activity2 is
mapped to equals. As for the value1 activity, it creates the string Poodle. Finally, the
getProperty1 activity is instantiated in an activity that extracts the name property of an object
of type Item.

Figure 7 ς TestCase3_TestCreateCustomer specific test case in the Petstore application

Finally, in Figure 7 it is displayed an instantiation of the TestCase3 generic test case (cf. Figure
4). The goal of this test case is to produce an object of type Customer with a specific name and
password (John and john_pass, respectively). For this, the value1 and value2 actions are
mapped to activities that create the strings John and john_pass, respectively. As for activity1, it
is mapped to createCustomer activity. The object of type Customer that is to be produced is
stored in the output parameter result1. This specific test case presents a clear difference with
regards to the two test cases presented previously (cf. Figure 5 and Figure 6). It returns as
output an object that is not of a simple type, but of type Customer in this case. This is
important for checking the functional equivalence of the test case in the original and migrated
applications, as we explain in Section 3.2.2.5.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 20 of 39

3.1.4 Comparing Specific Test Cases in the Original and Migrated
Applications

When a generic test case is converted into a specific test case for a particular scenario (cf.
Section 3.1.3), it is integrated in both the original and the migrated applications, since the
purpose is to check that the behaviour of such test cases in both applications is the same. To
this end, we run the test cases in both sides with fUML and compare them with JUnit. This is
further explained in Section 3.2.

3.2 Technical Description

As explained in Section 2, there are several approaches to derive test cases from model level
specifications. In our approach, we take advantage of the knowledge of the user whose
application is being migrated. In this sense, he/she is responsible for establishing the
relationships between the features in the generic test cases and those in the specific activities.
In this section we present the architecture of our prototype and describe its parts.

3.2.1 Prototype Architecture

Figure 8 ς Diagram of the overall process of the prototype

Figure 8 displays a diagram with the overall process carried out by our prototype. The artefacts
that take place in such process are numbered for their explanation. The central artefact of our
prototype is an ATL model-to-model transformation (artefact no 5) that deals with the
integration of the generic test suite in both the original and migrated applications. The inputs
of such transformation are shown with a blue background (artefacts no 1-4). The abstract test
suite is actually part of the ATL transformation. After the application of the transformation, the
test cases (or only part of them) are integrated into the behavioural models of both the
original and migrated applications. These are the outputs of the transformation, shown with a
green background. We then execute the test cases with fUML and the values generated are
afterwards compared by a program that uses JUnit (artefact no 8). Finally, a report with the

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 21 of 39

results of the behavioural comparison of the original and migrated applications is printed. In
the following section, each of these components is explained separately.

3.2.2 Components Description

In this section, each of the components shown in Figure 8 are separately described.

3.2.2.1 Correspondences Metamodel and Model (Artefacts no 1 & 2)

The model that contains the correspondences between the generic test cases and the specific
activities is an important part of our prototype since it actually drives the model-to-model
transformation. The reason is that the transformation only creates those specific test cases
that are included in the model with the correspondences.

Figure 9 ς Metamodel for the correspondences among generic test cases and specific activities and parameters

The correspondences among the generic test cases and the specific actions and parameters
are specified in a model conforming to the metamodel shown in Figure 9. As we can see, the
models conforming to this metamodel contain a root object of type CorrespondencesModel,
which is composed of objects of type TestCase. There must exist an object of type TestCase for
each of the specific test cases that the user wants to have in the original and migrated
applications. Please not that, indeed, more than one specific test case can be obtained from
the same generic test case, so that the latter can be instantiated more than once. It is
important that the name assigned to the specific test cases is always
TestCaseX_TestSpecificTest, where X is the number of the generic test case, such as the ones
shown in Figure 5, Figure 6 and Figure 7. This name must be indicated in the name attribute of
the TestCase class. Then, for each test case, there are four types of correspondences that can
be established. For each one of them, the user needs to specify the name of the generic
artefact in the generic test case, the name of the artefact in the original application, and the
name of the artefact in the migrated application (since the mapping is performed between the
generic test case and both the original and migrated applications). When explaining these four
types in the following, we refer as example to the correspondences model that was created for
obtaining the test cases shown in Figure 5, Figure 6 and Figure 7 out of the generic test cases
displayed in Figure 2, Figure 3 and Figure 4. Such correspondences model has been split in

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 22 of 39

Figure 10, Figure 11 and Figure 12, where the Correspondences_Model_Petstore represents
the same object in the three diagrams. In the first part of the model (Figure 10), we have also
included the generic activity for which mappings are established so that the model is better
understood. The four types of correspondences are explained as follows:

¶ ActivityCorrespondence. The purpose of this class is to establish mappings between an
action representing an activity in a generic test case and an activity of the specific
application (both original and migrated ones). For each correspondence of this type,
not only the correspondence must be given, but also the type of the output(s)
produced by the activity must be indicated with objects of type TypeCorrespondence.
For instance, in the correspondences for the TestCase1_TestLogin test case (cf. Figure
10), there are two objects of type ActivityCorrespondence, one for activity1 and the
other one for activity2 as shown in Figure 2, which correspond to activities
loginScenario and equals both in the original and migrated applications, as explain in
Section 3.1.3. Then, since both activities have one output, it is also needed to indicate
the type returned in such outputs, what is done by objects of type
TypeCorrespondence. As we can see in Figure 10, the former activity returns an object
of type String while the latter returns an object of type Boolean, both in the original
and migrated applications.
Similarly, in the correspondences for TestCase2_TestFindItem and
TestCase3_CreateCustomer (cf. Figure 11 and Figure 12), objects of types
ActivityCorrespondence also exist. In these examples, we can see how we can also
specify complex types for the returning values of the activities. For instance, activity1
has as output type Item in TestCase2_TestFindItem, while activity1 has as output type
Customer in TestCase3_CreateCustomer.

¶ PropertyCorrespondence. In UML activity diagrams, it is common to have actions
whose purpose is to extract a property of an object. They are called
ReadStructuralFeatureAction. The purpose of the objects of type
PropertyCorrespondence in the correspondences model is to indicate what is the
property that we want to extract, as well as its type (output type of the action) and the
type of the object from where we want to extract the property (input type of the
action). There is an object of type PropertyCorrespondence in the correspondences
model for TestCase2_TestFindItem test case (cf. Figure 11) for the getProperty1
generic action shown in the generic test case of Figure 3. We can see in Figure 11 that
the name of the property we want to extract is name, whose type is String as indicated
by the TypeCorrespondence for the output port (output_getProperty1). There is also a
TypeCorrespondence for indicating the type of the input object, which is Item.

¶ ValueCorrespondence. In UML activity diagrams, there are actions to create values,
namely ValueSpecificationAction. They are very useful for creating values in test cases.
For each ValueSpecificationAction, which are value1 in the generic TestCase1 (cf.
Figure 2), value1 in the generic TestCase2 (cf. Figure 3) and value1 and value2 in the
generic TestCase3 (cf. Figure 4), we need an object of type ValueCorrespondence in the
correspondence model indicating the value given to the activity, and an object of type
TypeCorrespondence indicating the type of the value created (cf. Figure 10, Figure 11
and Figure 12).

¶ ParameterCorrespondence. In all generic test cases, in order to be able to compare
their results, we need a Parameter that contains the object returned by the test case.
The type of such object can be either of a simple type (as indicated in the
correspondences model of Figure 10 and Figure 11) or of a complex type (such as type
Customer as indicated in Figure 12). This type must be indicated in objects of type
ParameterCorrespondence.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 23 of 39

As a clarification, please note that it is only needed to define the type of the input of an action
when the action is of type ReadStructuralFeatureAction, i.e., it is only needed to define an
object of type TypeCorrespondence for identifying the input type of an action whenever we are
dealing with an object of type PropertyCorrespondence, as we have shown in Figure 11.

Figure 10 ς View of the Correspondences_Model_Pestore containing the TestCase1_TestLogin test case as well as
the mapping with the generic test case

Figure 11 ς View of the Correspondences_Model_Petstore containing the TestCase2_TestFindItem test case

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 24 of 39

Figure 12 ς View of the Correspondences_Model_Petstore containing the TestCase3_CreateCustomer test case

3.2.2.2 Behavioural Model ɀ Activity Diagrams (Artefacts no 3 & 4)

The Behavioural Model (Activity Diagrams) Original Application, artefact number 3 in Figure 8,
represents the model of the original application (the PSM) that is obtained using the WP8
techniques, namely reverse engineering techniques. Typically, an activity diagram is composed
of activities that include several different types of actions. For instance, there are actions that
call other activities in the diagram, actions that create values, or actions that read a feature of
an object. A very small excerpt of the reverse engineered activity diagram for the Petstore
application is show in Figure 13. The Behavioural Model (Activity Diagrams) Migrated
Application, artefact number 4 in Figure 8, represents the model with the activity diagrams
after they have been manipulated in the forward engineering phase with the purpose of
satisfying the migration goals.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 25 of 39

Figure 13 ς Excerpt of activity diagram for the Petstore

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 26 of 39

3.2.2.3 M2M Transformation & Abstract Test Suite (Artefact no 5)

This artefact is the central part of the prototype, since it deals with the conversion of generic
test cases into specific test cases. With this process, we say that generic test cases get
instantiated into specific ones.

The model-to-model transformation takes as input the model with the correspondences and
the behavioural models with the activities for both the original and migrated applications, as
shown in Figure 8. As output, it returns the behavioural models for both the original and
migrated applications enriched with the test cases according to those specified in the
correspondences model.

A flow chart of the transformation is depicted in Figure 14. There are two main matched rules
(declarative rules) in the transformation. While one takes the behavioural model of the original
application as input and produces the same model with the specific test cases integrated as
output, the other one does the same for the migrated application. These rules also read the
correspondences model, where the former rule deals with those attributes containing
correspondences for the original application and the latter rule deals with those for the
migrated application, and check how many correspondences there are defined. Then, for each
of the correspondences, the rules call some lazy rules that are in charge of producing the
activities and actions representing the specific test cases. Furthermore, there are several other
lazy rules and helpers being called from the former lazy rules.

Please note that, in case model correspondences are not properly defined, the transformation
execution may produce errors. For instance, if there is a correspondence between a generic
action in the generic test case and an activity in the original application that does not exist, the
transformation shall return an error in its execution. Similarly, an error shall be produced in
case the correspondence model is missing a mapping.

Also note that, as specified in the artefact no 5 in Figure 8, the abstract test suite is integrated
in the M2M transformation. In fact, as mentioned before, the generic test cases cannot be
executed without a concrete scenario. They have no semantics, and represent simple
templates. Even though we have represented them as activities in Section 3.1.2 for
explanation purposes, the actions that appear in such activities lack specific semantics, and
they only make sense when they are instantiated in a concrete scenario. Such instantiation is
done by the M2M transformation. In any case, the representation of the generic test cases
with graphical activities, as shown in Section 3.1.2, is useful for the user to understand the
template and to be able to define the correspondences model.

3.2.2.4 Behaviour al Model ɀ Activity Diagrams with Test Suite integrated (Artefacts
no 6 & 7)

These models are the same as those presented in Section 3.2.2.2, however having integrated
specific test cases. For example, specific test cases of the reverse-engineered Petstore
application are shown in Figure 5, Figure 6 and Figure 7.

3.2.2.5 Comparison of executions of Test Cases (Artefact no 8)

This artefact is a Java program that launches the fUML engine that executes the activity
diagrams of both the original and migrated applications. It defines a ModelExecutor object for
each activity diagram. These objects execute then the activity diagrams step by step
(ModelExecutor.executeStepwise). In this way, we can programmatically access what is
happening during the execution of activities representing specific test cases.

D11.1 ς Methodology and techniques for deriving test

cases from models Version: 1.0 ς Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 27 of 39

We use JUnit (cf. Section 3.1.1) to compare the values returned for the same test case in the
original and migrated applications. In this way, the program checks several things, such as the
value produced by the test cases is not null, the size of the returned values are the same, or
the content is the same. Checking if the content is the same is performed quite
straightforwardly if the value returned is of a simple type, since only the Assert.assertEquals
(valueOriginal, valueMigrated) method needs to be called.

However, the situation is different when we need to compare two objects of a complex type.
In this case, the assertEquals operation does not work, since we are comparing two different
instances. For this reason, we iterate over the attributes of the objects returned by the test
case of the original and migrated applications. A comparison is then realized for the value of
each of the attributes. If all attributes have the same value in both sides, then we consider the
objects to be equal.

This program prints in the console the results of the assertions, as explain in Section 3.2.2.6.

Figure 14 ς Flow chart of the M2M transformation

3.2.2.6 Report Printing (Artefact no 9)

This artefact represents the printing of the report comparing the values returned by the test
cases in both the original and migrated applications by the program described in Section
3.2.2.5. An example of a report of a successful comparison for the specific test cases shown in
Figure 5, Figure 6 and Figure 7 in the Petstore application is shown in Figure 15.

********** TestCase1_TestLogin **********

