D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

ARTIST
FP7 -317859

artist

Advanced softwarebased seRvice provisioning and
migraTlon of legacy Software

Deliverable D11.1

Methodology and techniques for deriving test cases from

models
Editor(s): Javier Troya
Martin Fleck
Patrick Neubauer
Responsible Partner: TUWIEN
StatusVersion: Final Versiorg v1.0
Date: 31/03/2015
Distribution level (CO, PU) PU
ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Pagel of 39

D11.1¢ Methodology and techniques for deriving test

cases from models

Version: 1.@; Final, Date: 31/02015

Project Number:

FP#317859

Project Title:

ARTIST

Title of Deliverable:

Methodology and techniques for deriving te
cases from models

DueDate of Delivery to the EC| 31/03/2015
Workpa_lckage responsible fog WPLL
the Deliverable:
Javier TroydTUWien)
Editor(s): Martin Fleck (TUWien)
Patrick Neubauer (TUWien)
Contributor(s): -
Reviewer(s): Jesus Gorronogoitia

Approved by:

All Partners

Recommended/mandatory
readers:

WP 6 WP 7WP §WP 9

Abstract:

This deliverablgresentsa prototype to allow the
behavioural comparison of the original and t
migrated applications at model levello this end,
first the literature is reviewed for relatel
approaches. Thent is explained hovgeneric test
cases at model levalre providedn the prototype

whose elements have to be mapped to acti
elements of a model irorder to instantiate and
latter executethe test case.

Keyword List:

Generic est case, specific test case, activ
diagrams, system under test, corresponder
model, JUnit, M2M transformation

ProjectTitle: ARTIST

Contract No. FR317859
www.artist-project.eu
Page? of 39

D11.1¢ Methodology and techniques for deriving test
cases from models

Version: 1.@; Final, Date: 31/02015

Licensing information

Generally EPL (open sourceyicated otherwise.

The document itself is delivered as a descript
for the European Commission about the relea
software, so it is not public.

Document Description

Document Revision History

Modificationsintroduced

Version | Date

ModificationReason Modified by
v0.1 13/02/2015 | Table of Conterst TUWIEN

20/02/2015 | Related work and rationale for thl TUWIEN

v02

approach added
v0.3 05/03/2015 | Explanation of the implementation | TUWIEN
v0.4 10/03/2015 | Introduction added TUWIEN
v0.5 11/03/2015 | Package information added TUWIEN

Last version ready for interng
v0.6 13/03/2015 (TUWIEN) review TUWIEN
v0.7 16/03/2015 | Internal corrections performed TUWIEN
v1.0 24/03/2015 | Suggestions by reviewapplied TUWIEN

ProjectTitle: ARTIST

Page3 of 39

Contract No. FR317859
www.artist-project.eu

D11.1¢ Methodology and techniques for deriving test
: ! L il 2000
Table of Contents

Table Of CONTENTS.. ... e e e et e e e e e e e e e e e e e e e e s s eaesaaaeaaaaannnnnnnes 4
TaADIE OF FIQUIES....cc ettt e e e e e e e e e e e e e e e e e 5
Terms and abbreviations..............ccciiiiii e]
EXECULIVE SUMIMIATY.uuuuiiiiiiiiiiiiireeeeeeeeerereeeeeeeeeeeaaaaeeeaaaaaaaaaaeaaasaasaasaassnssnnsnsersressssssnnenes 8
R [0110 To 0T 1o] IO PPRTT TP 9
1.1 Aboutthisdeliverable.............oooiiiii e 9
1.2 Fitting into overallARTIST SOIULION........cuuviiiiieeiiee e 10
1.3 MaIN INNOVALIONS.....ciiiieiiie ettt ee et e et e e e e e s s s e e e e e s e snbeeeeeaeseaanns 11
1.4 DOCUMENTE SIFUCTUIE..t eeeeiiiiieiititie e e e et ettt e e e e e e e e e ee bbb e e e e e eeaeeeeennnns 11

2 Related Work and Rationale Behind the Approach.................cccccccc e, 12
2.1 Existing categorization of MBT approaches..........ccccooviiiiiriieiiiiiiiieieee e 12
211 Modelbased tESHING PrOCESS.......cuuiiiiiiiiiiiiee et 12
21.2 BUIIAING @ MOAEL...cceeeeiieeiie e 12
2.1.3 Choosing test selection Criteria.............cccceeeei e 12
2.1.4 Creating a test case SPeCIfiCatiQn.............uuvveeeeiiiiiiiiiiiee e 13
2.1.5 GENErating 1St CASES......ciiiutirieiee e ettt e e e et e e e e et e e s eae e 13
2.1.6 EXECULING tEST CASES.....uuuuiiiiiiiiiiiiiieeiiee et e e e e e e 13
2.1.7 ANAlYZING FESUIS ... 14

2.2 Rationale for following our approach.............ccccccoi it 14

3 IMPIEMENTALION.eiiiiiiiie e e e e 16
3.1 FUNCtioN@l DESCIIPLION.cciiiiiiiiiieie ettt e e e e 16
3.1.1 Activity Diagrams, fUML and JUNIL...............cccvvviimiiiiiieeiieeeeeeeeeeee e 16
3.1.2 GENEIIC TESE CASES ... iuuuiiiiiieeeiiiiieieeee e e s esttteee e e e e s st r e e e e e s annneeeeaeeeeennees 16
3.1.3 Converting a Generitest Case into a Specific Test Case..........cccccceeernne 18

3.1.4 Comparing Specific Test Cases in the Original and Migrated Application20

3.2 TechniCal DESCIIPUOM.......uuiiiiiiiiiiiiie e e e s 20
3.21 Prototype ArChiteCtUre.........oooviiiieeeee e 20
3.2.2 Components DeSCIPLION.ooi e e s 21

3.2.2.1 Correspondences Metamodel and Model (Artefacts no 1.&.2)............. 21
3.2.2.2 Behavioural Modet, Activity Diagrams (Artefacts N0 3 &.4)................... 24
3.2.2.3 M2M Transformation & Abstract Test Suite (Artefact no.5)................. 26
3.2.2.4 Behavioural Modet; Activity Diagrams with Test Suite integrated (Artefacts
no 6 & 7)26

3.2.2.5 Comparison of executions of Test Cases (Artefact nQ.8)...................... 26
3.2.2.6 Report Prining (Artefact N0 Q)....cvvveivieiieiiiiiiieeeee 27

ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Pages of 39

D11.1¢ Methodology and techniques for deriving test

cases from models Version: 1.@; Final, Date: 31/02015
3.2.3 Extension of the prototype.........coooiiiii e 29
3.3 Technical SPECIfICALIONS.ccoiiiiiiiiiie et 30
4 DelVEry and USAQE.......cuiiiiiiiiiiiiieee e ettt a s e e e e s e e e e e s s eee s 31
4.1 Package INfOrmation..............oooiiiiii i a e 31
4.2 USEI MANUAL......eeiiiiieiiiii et e e e s e e e e e e s neb e eeaeeeas 31
42.1 Executing the ATL modt-model transformation...........cccccoccvvvvvveeeennnnnee 31
4.2.2 Executing the Comparator of executions of Test Cases............cccccvveeernnne 35
4.3 Licensing INfOrMAatioN............uuuuiiiiiiiiiiiiieiieeeee e 36
I © 1o 1Y/ o1 (o = o P EPT PP 36
5 RETEIBINCES. ... it e e e e e e e e 39

Table of Figures

HGUREL ¢ MIGRATIORPROCESS BHRTIST ... e 10
R0 2 o € = N [0 1oy Y = 17
HGURES C GENERIGESTIASE. ...t eeiiii e e et e e et e e e e et s e e e e et s e e s e eaa s e e e e ett e e e e eeaan e e e e e eannas 17
FGURE C GENERIGESTIASE. ..ot it ee ettt e et e e ettt e e e e et e e e e e et e e e e e et b e e e s esba e e e eeeaannnns 18
HGURB ¢ TESTASH._ TESTOGINSPECIFIC TEST CNSEHEPETSTORE APPLICATION.....cccvvvvvennnnnn.. 18
HGURB ¢ TESTASR_TESENDTEMSPECIFIC TEST CHSEHEPETSTORE ARBATION......oceeeeeeeeeeees 19
HGURK ¢ TESTASB_TESTREATEUSTOMERPECIFIC TEST CNSEEPETSTORE APPLICATION.....19
HGURE ¢ DIAGRAM OF THE OVERRROCESS OF THETRR®PE........ccvuiieeiiiiieeeeeeriieeeereriiaeeenenns 20
HGURE ¢ METAMODEL FOR THE REFPONDENCES AMONGERIC TEST CASHS S3RECIFIC ACTN\ETIE
AND PARAMETERS ...ttt i eittttiiieeeette e e e ettt eeeeeatt e eeee et eaes ettt eeseatanaesesttnaaersrtaaeesesranns 21
HGURELO ¢ VIEW OF THEORRESPONDENCHI®DEL FESTOREONTAINING THEESTASH_TESTOGIN
TEST CASE AS WELTHESMAPPING WITH TEEENERIC TEST CASE....cvuuiieiiiiiieeeeeeeiieeeeeerinnnnns 23
HGURE 11 ¢ VIEW OF THE CORRESPONDENCE®DEL PFETSTORE CONTAINING THE
TESTASE. TESTHINDITEMTEST CASE....ciiitiiiieeiiitieeee ettt e e e e e e e e e e et e e e e e ettan e e e s aaa e e e eerannas 23
HGURE 12 ¢ VMEwW OF THE CGORRESPONDENCHI®DEL PFETSTORE CONTAINING THE
TESTASE (REATEUSTOMEREST CASE....ivtuuiieiiiiiieeeeettneeseettieeeeestaaeesestnaeesesrnaaaaeens 24
HGURHE.3¢ EXCERPT OF ACTIVIRGBRAM FOR THETSTORE.ciivtieiiiiieieiieeiteeereeeerieesenneeeenns 25
HGUREL4 ¢ FLOW CHART OF TMEM TRANSFORMATIQN. ... cccvvviieeiiiiieeeeeeeieeeeeeetieeeeenrineeeees 27
HGUREL5 ¢ RESULT PRINTING FO#E TCOMPARISON OF TTERSES IN THE ORAGIAND MIGRATED
AP P LICATION S, 1ot ttttttt ettt ettt ee et et e et e et e et e e st e et ssteene st eetnsesaresnsesnesnsenersneetnresnrennnns 29
HGURHA6C JUINITVIEW AFTER THE EXEONTOF THE COMPARNSTF TEST CASES.......oevvveeevnnnnnnnn 29
HGUREL7 ¢ SELECTIN®/ORKINGETS ATOPLEVEIH EMENTS....ovuuiiiiiiiieeeeeeiiieeeeeetineeeeesiaeeeeeens 31
HGURE18 ¢ FOLDERS AND FILES TONED IN THEUARTISPOSTMIGRATIONBT.INSERTESTASES
o TN | =l PSR PPRPTN 32
HGURHE9¢ CONTENT OF THETEGRATIEESTASESAUNCHAUNCHER........ciiiiviiieeeeeiii et 33
FHGURROC EXECUNG THEVI2ZM TRANSFORMATION.ctivtieeeeeetieeeeeetieeeeeetteeeeeeerieeeeeeannnnns 34
FHGURR1 ¢ CONFIGURATION WIZARDR THEI2M TRANSFORMATION....ccvuuiieriiiieeeeeerieeeeeeennnn 35
HGURE 22 G FOLDERS AND FILES TONED IN THE
EUARTIS® 6 MBY.MODELEXECUTIGNMLDEBUGVALEXTENSIONEROJIECT....uvvvvrrrrrrrrerrennee. 35
HGURR23C CONTENT OEONFIBPROPERTIESuuiiitiiiiiiieeii e eiieee et ee e e e e et e e et e e enaeeeaeeeennnns 36
ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Pageb of 39

D11.1¢ Methodology and techniques for deriving test

cases from models Version: 1.@; Final, Date: 31/02015
HGURR4 ¢ IMPORTING THE PROSECHK THIIODEIBASEINESTER.....cvuiiiiiieeiieeeeieeeene e e 37
HGURR5C STARTING TO CREAMVERKINGE TS, ..cvu it ieiii et et e et e et e et e et e et eeean e eanns 38
HGURR26 ¢ CREATION OF TMDDEI-BASEQTESTEWORKING SET e 38
ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Page6 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

Terms and abbreviations

ATL Atlas Transformation Language
EC European Commission
DSL DomainSpecific Language
fUML Foundational UML
ISO International Organization for Standardization
M2M Model to Model
M2T Model to Text
MBT Model-Based Testing
MDE Model-Driven Engineering
MUT Model Understanding Toolbox
OCL Object Constraint Language
PIM Platform Independent Model
PSM Platform Specific Model
SbSp Service based Softwaproviders
SUT System Under Test
T Task
UML Unified Modeling Language
WP Work Package
ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Page7 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

Executive Summary

In the context of the ARTIST project, the migration is performed based orelwidnden
engineering techniquesThus, theoriginal software is reverse&ngineered to obtain a model
based representation in terms of platforspecific models. These models are transformed into
more abstract models, such as UML models, which describeotiggnal application in a
platform-independent way. The actual migration is performed by applying model
transformations and code generators to create the migrated software.

When a software is migrated to new technologies or platforms, one important task is to ensure
the quality of the software after the migtion has been performed. In particular, two aspects
have to be considered: it has to be evaluated whether the expected improvements of the
migration have been accomplished amtiether the migrated software still meets the original
specification. In thislocument we focus on the latter aspect. Here, it is investigated whether
the migrated software still behaves the same as the origova in terms of functional
requirements. Therefore, theébehavioual equivalenceof the original and the migrated
software has to be ensuredviore precisely, and since models are the central artefacts in the
migration in the context of ARTIST, we use such models to also drive the behavioural
equivalence at model level, which is complemented with the -asdr based testing
component

In this documentit is presented and explained theomponentto realize the behavioural
comparisonat model levelusing the activity diagrams that ardt@ined in the migrationin a
migration process, the complete software ri®t modernized,but only specific parts of it.
Therefore,the prototype focuses on checkitige behavioural equivalence only tifose parts

that have changed. To do so, the domain knowledge of the user is utilized, and the user
becomes a key part in the behavioural eqlévece testing, since he/she has to decide which
tests must be performed. This also allows to avoid the problem of the state space explosion
when defining test cases for software.

The errors that are detected at model leyetgarding functional equivalence of the original
and migrated applicationare cheaper to repair than those detected after the application has
been deployed. A simple reason for this is that, having the application specified in a model
level, we have notput any effort yet on deploying it, so the respective changes can be
performed in the model before the code of the application is obtain&ier having checked

the functional equivalence in model levéhis does not necessarily mean that the functional
behaviour of the applications at code levelalso guaranteed, but at least a part of its
functionality has been checked, what is then complemented with the- et based testing
component.

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
PageB of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

1 Introduction

Whena software is migrated to new technologi®@r platforms, one important task is to ensure
the quality of the software after the migration has been performbdparticular, two aspects
have to be considered: it has to be evaluatetiether the expected improvements of the
migration have been accomshed andwhetherthe migrated software still meets the original
specification.In this document we focus on tHatter aspect. Here, it is investigated whether
the migrated software still behaves the same as tiigjinal software in terms of functional
requirements. Therefore, theébehavioual equivalenceof the original and the migrated
software has to be ensured. More precisely, this document focuses onbéhavioual
equivalence at model level, what is complementedhutite enduser based testing prototype
presented in D11.71].

During the migration of the software, weeed dedicated test cases to verify theehavioual
equivalence of the original software and the migrated software. As lbkaviour of the
original software, as well as of the migratede, is described using models, we make use of
these models for testing, instead of reasoning about tHehaviouron code level. In the
domain of modeldriven engineering and testing, we malstinguish between two distinct
techniques: model testingand modetbased testing Model testing refers to activities for
ensuring the quality of the models themselves (e.g., using model simulation), whereas the
term modelbased testing (MBT) refers topplying models for desigmg and generating
software artdacts with the purpose of testing a software application in general. Thus, model
testing and MBT differ concerning the efidct under test. In model testing, the afact under

test is the model, andn modetbased testing, models are used to verify the quality of the
system under test (SUTn this document, we present an approach that mixes concepts of
both terms.On the one hand, it is the model what we use for testing and on which we realize
moded simulations based on fUMR]. Furthermore, generic test cases gmvided and also
defined at model levelOn the other hand, we provide a solution that uses generic test cases
and user domain knowledge to produce speciéisttcases for specific SUT.

1.1 About this deliverable

Given that theoriginal software is a valid implementation of the reversagineeredoriginal
platform-specific moddk) (PSN), as well as of the deriveglatform-independent modgk)
(PIM), we can use th&SM orPIM as the sole specification of the expectszhaviourof the
migrated software. Thus, by testing wheth#tte behaviour is maintained in the migrated
PIM/PSM, we may verify indirectly but validly whether the original and the migrated software
behave equivalently with respect to the aspects that are specified in the mo@dlgourse,
testing orly the aspects specified in these modelses not account for verifying the full
equivalence ©both systems, which would bendecidable in most of the casesFor this
reason, this approacts complemented with the endser based testing approach. In any case,
focusing only on the aspects that are specified in tin@delsmay allow us to overcome the
undecidability issue and to concentrate the test endeagmn those aspects that are strictly
relevant in a specific migration scenario. Thug sbecifying in the models only those aspects
that are relevant with respect to the migration scenario, the user is empowered to balance
between aspects to be tested ambt relevant aspectdn fact, the domain knowledge of the
user about the application comes in handy for the approach we pre3aig.approach is also

in line with the general approach of ARTIST: in a migration, not the entire software is affected,

' In computability theory and computational complexity theory, andecidableproblem is a decision
problem for which it is known to be impossible to construcsiagle algorithm that always leads to a
correct yesor-no answer

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page9 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

but only those parts that need to benigrated in orderto adaptthe software to the cloud.
Therefore, only the migrated parts are reflected explicitly in thedelsfor the migration and
these are also the relevant parts that need to be tested regardindpéavioual equivalence.

This deliverable is tailored at presenting and descrililmg prototype for the behavioual
comparison of the original and migrated applicatipas the model levelWe explain how
concepts and ideas from model testing and dabbased testing are utilized, and the steps
needed to execute the prototype.

1.2 Fitting into overall ARTIST solution

In the context of the ARTIST project, the migration is performed based on widdeh
engineering technique$3]. Thus, theoriginal software is reverse@ngineered to obtain a
modetbased representation in terms of platforgpecific models. These models are
transformed into more abstract models, such as UML models, which describeridjiaal
application in a platfom-independent way. The actual migration is performed by applying
model transformations and code generators to create the migrated software.

I Migration Assessement

|
I
WP5 ‘ r————i————'\
Migration —

A e it [-OK]
WP8/WP9
[Testing Behavioral

Equivalence

- [-OK]
weit | _ _ __1____

T11.1 r Validation of the 3

TIL2 [OK) \ . MratonGoals_ _
Legend WP11 fm————————— N
WP... Workpackage T11.3 L Certification of the I
TX.X ... Task X.X [OK] \ — _Migrated Product _

... Focus of WP11

this document T11.4

Figurel ¢ Migration Process of ARTIST

To be more specific, the overall migration prezén ARTIST is depictedRigurel, with a
special focus on WP11 taskmd can be briefly summarized as follows. In a first step, the
original software is analsed to assess technical and néechnical consequences of possible
migration strategies (WP5). This step results in sdeflned migration goals constituting the
input for the decisioamaking on how the migration is performed in the next s€w/P8 and
WP9). Aer the migration has been performed, we have to ensure a high quality of the
migrated software and evaluate the success of the migration. Therefore, we propose an
iterative approach. First, we test theehavioual equivalence of theriginalsoftware andthe
migrated software. This is done using two different approaclaetest case based approach
(T11.1) andan enduser based approach (T11.2yhere the focus of this document is the
former. Both approaches are complementary: since the test coverage delnhevel is smaller
than the coverage at software level, the test case based approach, focusing on checking the
functional equivalence in a model level, is complemented with the-eset based approach,
executed after the migrated application has been lbdged If we encounter any issues
concerning the expectedehaviour the issue is reported back to the migration step in order to
enable the developers performing the migration to adjust the migration and correct the issue.

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel0of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

After the original software andthe migrated software have been determined to behave
equivalently, we may proceed with validating whether the migration goals defined are reached
(T11.3). If also the goals of the migration have been fulfilled by the current version of the
migrated softwae, we perform the certification of the migrated software product. The Service
based Software providers (SbSp) certification model checks the application against a set of
best practices and standards (e.g., 1SO20000 or 1SO27000) considering the thres, aspect
finance, process and application (T11.4).

1.3 Main innovations

A central aspect in the prototype presented in this deliverable is the knowledge of the user
about the application that is being migrated. In this sense, and due to the lack of test cases in
the applications of the use case providers in the ARTIST project, thalgearakes part othe

testing procesas we will explain throughout the documemnother important aspect of our
approach is that we use the artefacts at model level as the solefg@tion of the expected
behaviour of the migrated models and the migrated software, since the original software is in
fact a valid implementation of the reversmgineered models. Another reason to stay at this
level is thatit may not be feasible to prade a running instance of the original system due to
some reasons such as its age, so there may be a lack of engineers with the expertise to deploy
or execute such systems. For this reason, representing the software as models allows us to use
model simulgion techniques to simulate the behaviour of the system.

The use of models also allows us to avoid the problem of the state space exp[dion fact,

since the test generation is performed via criteria specified by the user, we focus only on
testing the important aspects of the systerurthermore, detecting flaws at model level,
before the system is deployed on production, reduces the timd aosts for the design
developmentdeploymenttesting lifecycle and, more importantly, it improves the quality of
systems on production. On the other hand, detecting flaws in production may have a strong
negative impact on the business.

1.4 Document structur e

After the introduction, in the rest of the document we explain the functionality of the
prototype as well as its implementation. First, in Sectbowe present sme related work in

the field of modelbased testing. In this sense, in Secti@drl we describe how these
approaches are categorized in the literature. Then, basedhe information presented, in
Section2.2we argue about the rationale fahe approach we present. Secti@is devoted to

the explanation of the prototypelt is divided in three main section# Section3.1 we
introduce some concepts that are needed in order to understand the functionality of the tool,
while in Sectior8.2we explain all the partef the prototype and how they are linked together
and finally, in Sectio.3, we describethe technical specificati®wof the prototype.Finally, in
Section4 we explain how the prototype has been packaged as well as the necessary steps to
execute it Moreover, we present licensing information and download instructions.

% Behavioural verification usually employs the generation of a state/transition diagram, generally called
the state space in one or another form. A problem of these state spaces is thaotiegybecome too

large to be verified even when using clever verification algorithms and very powerful computers. This
problem is called thstate space explosion problem

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagellof 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

2 Related Work and Rationale Behind the Approach

In this section we present some related work in the area of mbdskd testing, and explain
the rationalefor choosinghe approach presented throughout this document.

2.1 Existing categorization of MBT approaches

Several outstanidlg and comprehensive categorizations in the field of MBT have been recently
proposed by researchers. Thus, we combine existing ones to provide one common picture of
MBT concepts. We choose to follow the rather generic MBT process proposed by Utting et al.
[5] and align existing categorizations with each step of the MBT process. In the following, we
give a brief overview of this generic MBT process and provide a detailed description of every
step including existing categorizati® of approaches in a dedicated section for each step.

2.1.1 Model-based testing process

Utting et al [5] proposed a taxonomy of MBT approaches together with a generic MBT
process. For this documenive extend this process by an dixjit test analysis step, as it is
often found in other test process descriptiof@, [7], [8], [9]. The resulting processoatains

the following six steps:

Build a model of the system under test (SUT) from a specification
Choose test selection criteria to specify the testing purpose
Create a test case specification based on these criteria

Generate test cases to satisfy the test case $jpation

Run the test cases against the SUT

6. Analyze the results of the test cases

arwnNpE

In the following sections each of these steps is discussed in more detail and existing
categorizations are described. Please note that due to the high number of availatdtulie
in this field, we only give an overview in this document. For more details on a specific
technique or approach, we kindly refer the interested reader to the referenced literature.

2.1.2 Building a model

The first step in MBT is to build a modsdlthe SU. This secalledtest modelrepresents the
intended behaviar and is later used to derive concrete test cases. It is also possible to derive a
test model from the existing development model or code instead of using a specification, but
in such a case itsipossible that errors are propagated from the existing system or
development model into the test cases.

2.1.3 Choosing test selection criteria

After the model has been built, the test selection criteria have to be chosen. These criteria
represent the test purpse of the testing process and can be stated formally ormédly [10].

In modetbased testing the criteria will guide the generation of test cases in the testing tool. In
white-box testing they are additionally used for measg the adequacy of a test suite and
decidingwhen to stop testing9]. Utting et al[5], [9] defined the following six families of test
selection ctteria that canbe used in MBT:

9 Structural model coverag&hese criteria are defined on the structure of the model
(e.g., nodes and arcs of a transitibased model or conditional statements in a state
based malel) [5].

1 Data coverageThesecriteria help to find a small subset of values from a larger data
space by means of equivalence classes. The assumption is that a representative of an

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel2 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

equivalence class behaves the same as all other values from that class in terms of their
failure detection abiity [5].

1 Requirements coverageln some cases, requirements can be related directly to
specific model elements and therefore coverage criteria can be used to test these
requirements[5]. To maage the relation between requirements and model elements,
traceability information should be used, e.g. in form of a traceability matrix.

1 Ad hoc test case specificatiott. is also possible to create test case specifications
explicitly using a formal notation. This specification determines exactly which test
cases are created by the test case getmr{b].

1 Faultbased criteria.Faultbased citeria are mostly applicable to SUT models to
measure the faulfinding power of the test ste [9]. One of the most commofault-
based criteria isnutation coveragewhere the model is modified and test cases are
generated wlich can distinguish between the mutated model and the original model.
The assumption is that there is a correlation between faults in the model and faults in
the SUT, and between mutations and reairld faults.

1 Random and Stochasti@hese criteria include a random approach and the use of
statistical distributions[9]. Random and stochastic criteria are mostly applicable to
environment models since they contain the probabilities of actions and usage of the
SUT[5].

2.1.4 Creating a test case specification

As stated in the previous section, the test selection criteria can be defined informally.
Therefore it is necessary to create a formal test case specification, which defings kderive

a test suitg10]. Often tools are able to transform the given test case seledidaria into the
necessary specification internally.

2.1.5 Generating test cases.

To create test cases, a generator takes the formal test case specification and the test model as
input and produces &est suite(a set of test cases)tting et al.[5] describe six technologies
that can be used by a test cagenerator to generate tests from a model.

Random generatiomof tests is done by sampling the input space of a syst&marckhbased
algorithmsfor modeltbased test generation include graph search algorithms such as node or
arc coverage algorithms as well as other sedraked algorithms such as mdteuristic
search, evolutionary algorithms and simulated annealgdelcheckingis a technologyor
verifying or falsifying properties of a syste@ymbolic executioruns an (executable) model

not with single input values but with sets of input valuE=ductive theorem provingses
proves that support the generation of witness traces or countereplasy Finallyconstraint
solvingis useful for selecting data values from complex data domains, e.g., in combinatorial n
wise testing.

2.1.6 Executing test cases

After the test case generation, the set of abstract test cases needs to be executed. When
making alstract test cases executable, it is often necessary to concretize the inpttefBSUT

and abstract the output from the SUT to be able to compare them. Whileabstract test
cases can be independent from the programming language and exe@rioronmert of the

SUT, the concrete test cases must be specific to the programlangyage and execution
environment

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel3of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

2.1.7 Analyzing results

Each test case runs against the SUT and yields a verdict after it has been perfohised.
verdict can either be passin caseof a positive result, &il in case of a negativeesult and
inconclusivef the resultcannot be determined.

2.2 Rationale for following our approach

In this documentwe present a prototype for testing the behavioural equivalence of the
original and migrated applications at model lev@ls mentioned in the introductionye
present an approach that mixes conceptsnoddel testing and modebased testingOn the

one hand we defineand providegeneric test cases at model level and we simulate and test
the model.On the other hand, we provide a solution for producing specific test cases for the
specific SUT out olie generic test cases akde domain knowledge of the user

In our approach, the six steps for tmeodelbased testingdescribed in Sectiog.1.1are as
follows:

1 The models are the activity diagrams reveesgjineered inWP8 and the ones
produced in WP9, as we see in SecBoh?2

I We can say that the test selection is structural, since the generic test cases are defined
according tahe elements appearing in activity diagrams, as described in Setich

1 The creatiorof specific test cases is driven by the user, who has domain knowledge of
the application and oWhat parts are being modernized, as explained in Se@iar8
and Sectior8.2.2.1

1 The generation of such test cases is done automatically after the user specifies
correspondences amonghe provided generic test cases and artefacts in the
application.

1 The produced specific test cases are run agahestSUT (i.e., the activity diagrams of
the original and migrated applicationsds explained in Sectio®i2.2.5 Please note
that the SUT can be any behavioural dab expressed with activity diagrams. This
means that the models can have a higher or lower level of abstraction, and they can,
consequently, be either PSMs or PIMs.

1 Finaly, it is analysed wthher the results provided in both sides (original and raigd
applications) are the same, as explained in Se@i@r2.6

As already mentioned,ni our prdotype we have decided to focusn the behavioural
comparison betweenthe orignal and migrated applicationsnia model level(as the
approaches imodel testingdo). We have several reasons that back up such decision:

1 As mentioned inthe introduction, given that the original software is a valid
implementation of the reversengineered PSM, as well as of the derived PIM
(provided there are means to derive such PIMg can useither the PIMor the PSM
as the sole specification of the expected behaviour of the migrated software. Of
course, testing only the aspects specifisdthe PV or PIM does not account for
verifying the full equivalence of both systems, which would be undecidable in most of
the cases. However, focusing only on the aspects that are specified inSihé> R/
may allow us to overcome the undecidability issand to concentrate the test
endeavairs on those aspects that are strictly relevant in a specific migration scenario.
Also, the prototype presented in this deliverable is complemented with the et
based testing approach described in D1[1LP

1 When migrating and modernizing an application, it may happen that the original
application is no longer executabte it cannot be integratedvith modern testing

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel4 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

technologies This does not mean that the code of the application is not completely
available, but it may not be working any longer because it is obsolete or it may only
work in very old environmentsConsequently, it may not be feasible to provide a
running instanceof the original system and there may actually be a lack of engineers
with the expertise to deploy or execute such systerrs.this case, the reverse
engineered modelsan abstract the application from the aspects that make it not
work. Furthermore, if theapplication is not executable, then we canretecutetest
casesin the SUT being thesoftware either, as most MBT approaches suggest.
However, we can execute theverseengineeredmodels using fUMland integrate

the test cases in such models

1 None of tre current ARTIST use cases provide test cases in the original application. This
discards the possibility of reversagineeing such test cases and propagsagthem to
the migrated application.

I We use models as test artefacts to avoid the problem of tlaesspace explosion.
Besides, to further reduce the state space, we want to guide the test generation via
userspecified criteria that allows us to focus only on certain aspects. In fact, a
mentioned before, migrating an application does not mean changingmpletely.In
more detail only specific parts of the application are modernized and adapted for the
cloud. Since the user of the application is an active part in the process of migrating the
application, we also consider that he/she must be an acpeet in checking the
behaviairral equivalence between the original and migrated applications, since he/she
may have knowledge of which parts have changed and, consequently, which parts
should be object of the comparison study. This is why we leave togbethe task of
defining a correspondences model, as described in Se8tion

1 In any software generation process, the errors detected in the application model,
before the generation of code, are less expensive to refddif. Similarly, during the
migration process in ARTISTode of the migrated appli¢ci@mn will only need to be
generated in case behaviour is preserved in model level.

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel5of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

3 Implementation

In this sectionwe explain the prototype we have developed. It is divided in three main
sections. In SectioB.1 we introduce some concepts that are needed in order to understand
the functionality of the tool. Then, in Sectidh2 we explain all the parts conforming the
prototype and how they are linked together. Finally, in SecBdahwe present the technical
specification othe prototype.

3.1 Functional Description

For presenting our approachn this section we briefly explain its functionalitiyirstly, we
introduce the concepts of activity diagram®JML and JUnit, since they are key parts of the
functionality of theprototype. Then, we present howhe providedgenerictest cases look like,

and also show specific instances of such test cases. Finally, we briefly describe how the
behaviour in the origial and migrated applications acempared.

Later, in SectioB8.2, weemphasise otthe implementation of the prototype.

3.1.1 Activity Diagrams , fUML and JUnit

The behaviaral comparison performedwvith our approachis realized at modelelel. In
particular, we need both the original and migrated applications to have their betravio
represented asUML activity diagrams. Activity diagrams are graphical representations of
workflows of s$epwise activities and actions with support for choicigeration and
concurrency. The activities in the diagram represent operations of the sygtarexample of
an excerpt of an activity diagram for the Petstore application is showigimrel3.

Foundational UML(fUML)is a subset of the standard UMfor which there are standard,
precise execution semantics. This subset includes the typical structural modelling constructs of
UML, such as classes, associations, data types and enumerations. Furthermore, it includes the
ability to model behaviour usingML activities, which are composed from a rich set of
primitive actions. A model constructed in fUML is therefore executable in exactly the same
sense as a program in a traditional programming language, buthitils with the level of
abstraction and rieness of expression of a modelling language.

JUnit is a simple open sourcdramework to write repeatable tests. It is an instance of the
xUnit [12] architecture for unit testing frameworksJUnit includes assertions for teggi
expected results, test fixtures for sharing common test data and test runners for running tests.

3.1.2 Generic Test Cases

With our approach, we aim at definirend providinggeneric test casewith the prototype

that canthen be usedin any application In fact, the idea is that after the usaseshis/her
knowledge to map the concepts of such test cases with the concrete applications, the test
cases are automatically included in the application.

These generic test casdbat are provided in the protgipe cannot be executed anyhow
without a concrete applicationso they actually represent templates patterns for test cases
When they are included in the application, they are materialized instantiatedjn the form

of activity diagrams. For thigason, we novgraphicallyshow some of these generic test cases
also in the form of activity diagrams.

8 http://www.omg.org/spec/FUML/1.1/
4 http://junit.org/
ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel6 of 39

D11.1¢ Methodology and techniques for deriving test

cases from models Version: 1.@; Final, Date: 31/02015
Figure 2 shows our first generic test cas&V/e can see the defition of two actions
representingactivities activityl and activity?) and anotheraction that produces a value

(valuel) The output ofactivityl and the value produced imaluelare the inputs foractivity2,
while the output of the latter is returned asapameter, namelyesultl

ﬁstt‘asel \

output_activityl

inputl_activity2 output_activity2

input2_activity2

output_valuel

y

Figure2 ¢ Generic TestCasel

The second generic test case is showifrigiure3. It is similar to the previous one. However,
now, the first input ofactivity2 is not the output ofactivityl, but a specific property of the
object obtained as output imctivityl Such proprty is obtained by thection getPropertyl
Finally, the output o&ctivity2is returned as parameter iresultl

/ TestCase?2 \
output_activityl input_getPropertyl output_getPropertyl
activityl | getPropertyl

inputl_activity2 oytput_activity2

activity2] resultl

input2_activity2

output_valuel

y

Figure3 ¢ Generic TestCase2

The last generic test case shownFigure4, is simpler that the previous two. In this test case,
there are twoactionsproducing valuesyaluelandvalue2 which are the inputs foactivityl
Finally, the output of such activity is returned in paweter resultl

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel7 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

ﬂstC ase3 \

output_valuel

valuel

inputl_activityl output_activityl

input2_activityl

output_value2

G y

Figure4 ¢ Generic TestCase3

3.1.3 Converting a Generic Test Case into a Specific Test Case

As mentioned before, a generic test case has to be included indfispapplication in order to
make the formerexecutable. In this document we use the Petstore as a reference example.
With our approach, after the user specifies the mapping between the generic test cases and
his/her application, the generic test cases are transformed into specific activity diagfdms

way to specify such mappings is explained in Se@&i@anWwhen a generic test case is included

in a specific application, we say that the test case has bestantiated

p
TestZasel_TestLogin
decision: Boolean

= output_loginScenario
InginScenar‘lID

inputl_equals

= Jresultl

) output_equals
input?_equals pueq

E

cutput_1

Figure5 ¢ TestCasel_TestLogapecific test case in the Petstore application

Figure5 displays an instance of th€estCaseleneric test case shown figure?2 for the
Petstore applicatin. In this case, we can see hoactivityl has been mapped to the
loginScenaricactivity, while activity2 has been mapped to thequalsactivity. As for the
valuel, it has been assigned the integer o such integer is produced by ttdstion The
purposeof this test case is to check the value that is returned by ltgnScenariaactivity
when the first user logs irn this sense, iis compared if such value is 1.

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel8of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

-

p
TestCase? TestFindltemn
decisionltern: Boolean

indltem5e EnaE‘:

output_findlternScenario

3
cutput_Poodle

Figureb6 ¢ TestCaseZT estFindltenrspecific test case in th@etstore application

input_getlternMame

output_getlternMame
geﬂtemNamE

inputl_equals

output_equals

={resultl

output?_equals J

An instantiation of theTestCase®eneric test case shown Figure3 is displayed irFigure6.

The purpose of such test case is to test the behaviour of the application when looking for an
Itemthat has been previously stored. Specifically, the test expects thiteamwhose name is
Poodleis found. In this rapping, activityl is mapped tofindltemScenaripwhile activity2 is
mapped to equals As for thevaluel activity, it creates the stringPoodle Finally, the
getPropertylactivity is instantiated in an activity that extracts tliameproperty of an object

of type Item.

p
TestCased_TestCreateCustomer
customer: Customer

output_lehn
lohn [
oufput_jehn_pass

Figure7 ¢ TestCase3_TestCreateCustorspecific test case in the Petstore application

inputl_createCustomer

= resultl

input?_createCustomer J

Finally, inFigure7 it is displayed a instantiation of theTestCase8eneric test case (cEigure

4). The goal of this test case is to produce an object of §pstomemith a specifimameand
password(John and john_pass respectively).For this, thevaluel and value2 actions are
mapped to activities thatreatethe stringsJohnandjohn_passrespectively. As faactivityl, it

is mapped tocreateCustomeactivity. Theobject of typeCustomerthat is to be produced is
stored inthe output parameterresultl This specific test case presents a clear difference with
regards to the two test cases presented previously Fajure5 and Figure6). It returns as
output an objectthat is not of a simple type, but of typ€ustomerin this case. This is
important for checking the functional equivalence of the test case in the original and migrated
applications, as we explain 8ection3.2.2.5

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Pagel9of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

3.1.4 Comparing Specific Test Cases in the Original and Migrated
Applications

When a generic test case is converted into a specific test case pgartiaular scenario (cf.
Section3.1.3, it is integrated in both the original and the migrated applications, since the
purpose is to check that the behauioof such test cases in both applications is the same. To
this end, we run the test cases in both sides with fUML and compara thigh JUnit. This is
further explained in SectioB.2

3.2 Technical Description

As explained in Sectia there are several approaches to derive test cases from model level
specifications.In our approach, we take advantage of the knowledge of the user whose
application is being migrated. In this sense, he/she is responsieedtablishing the
relationships between the features in the generic test cases and those in the specific activities.
In this section we present the architecture of our prototype and describe its parts.

3.2.1 Prototype Architecture

1
Correspondences
Metamodel

conforms to

2

Behavioral Model 1 i
(G El D «—— WPS
Original Application :

& ; Model with
: Correspondences Behavioral Model
5 (Activity Diagrams) poreslll72
Migrated Application i

M2M Transformation

Behavioral Model
(Activity Diagrams)
Migrated Application
with Test Suite
integrated

Comparison
of executions of Test

Behavioral Model
(Activity Diagrams)
Original Application

with Test Suite
integrated

Figure8 ¢ Diagram of the overall process of the prototype

Figure8 displays a diagram with the overall process carried out by our prototype. Tomett

that take place in such process are numbered for theplanation The central artefact of our
prototype is an ATL modéb-model transformation (artefact ndb) that deals with the
integration of the generic test suite in both the original and raigd applications. The inputs

of such transformation are shown with a blue background (artefacts-dp The abstract test
suite is actually part of the ATL transformation. After the application of the transformation, the
test cases (or only part of thémare integrated into the behavioural models of both the
originaland migrated applications. These are the outputs of the transformation, shown with a
green backgroundWe then execute the test cases with fUML ahe tvalues generated are
afterwards compagd by a program that uses JUnit (artefact no 8). Finally, a report with the

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page20 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

results of the behavioural comparison of the original and migrated applications is printed. In
the following section, each of these components is explained separately.
3.2.2 Components Description

In this section, each of the components showrrigure8 are separately described.

3.2.2.1 Correspondences Metamodel and Model (Artefacts no 1 & 2)

The model that contains the correspondences between the generic test cases and the specific
activities is anmportant part of our prototypesince it actually drives the mode&i-model
transformation. The reason is that the transformation only creates ¢hggecific test cases

that are included in the model with the correspondences.

H NamedElement
= name : EString

i

H CorrepondencesModel testCases E TestCase | g
1.
activityCorrespond%nges propertyCofrespondences valueCorrespondences parameterfCorrespondences
3 0% ~ 0.* 0.

[ActivityCorrespondence |5 PropertyCorrespondence, H ValueCorrespondence |5 ParameterCorrespondence

T genActivity : EString T genProperty : EString T genValue : EString T genParameter : EString

T legActivity : EString T legProperty : EString T legValue : EString 7 legType : EString

T migActivity : EString T migProperty : EString T migValue : EString T migType : EString

typeCorfespondences
0.*

H TypeCorrespondence
¥
= : i typeCorrespondences

typeCorrespondences geqhlodel; ES‘Frlng yP P

0.4 T legType: EString :

T migType : EString

Figure9 ¢ Metamodel for the correspondences among generic test cases and specific activities and parameters

The correspondences among the gendsast cases and the spdici actionsand parameters

are specified in a model conforming to the metamodel showirigure9. As we can see, the
models conforming to thisnetamodel contain a root object of typ€orrespondencesModel
which is composed of objects of typestCaseThere must exist an object of tydeestCaséor

each of thespecifictest cases that the user wants to have in the original and migrated
applicatons. Please not that, indeed, more than one specific test case can be obtained from
the same generic test case, so that the latter can be instantiaeute than once.lt is
important that the name assigned tothe specific test cases is always
TestCaseX_T&pecificTestwhere X is the number of the generic test casich as the ones
shown inFigure5, Figure6 and Figure7. This name must be indicated in tin@ameattribute of

the TestCaselass. Then, for eacliest case there ae four types of correspondencéisat can

be established For each one of thenthe user needdo specify the name of the generic
artefact in the generic test case, the name of the artefact in the original application, and the
name of tke artefact in the migrated application (since the mapping is performed between the
generic test case and both the original and migrated applicatiéBen explaining theefour
typesin the following we referas exampldo the correspondences model thatas created for
obtaining the test cases shown Figure5, Figure6 and Figure7 out of the generic test cases
displayed inFigure2, Figure3 and Figure4. Such correspondences model has been split in

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page?1 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

Figure10, Figure1l1 and Figure12, where theCorrespondences_Model_Petstaspresents

the same object in the three diagramnis. the first part of the modelRigure10), we have also
included the generic activity for which mappings are established so that the model is better
understood.Thefour types of correspondences ageplained as follows

1 ActvityCorrespondencel'he purpose of this class isastablishmappings betweeran
action representing an activitin a generic test casand an activity of the specific
application(both original and migrated onesiror each correspondena# this type
not only the correspondence must be given, but also the type of the output(s)
produced by the activity must be indicated with objects of tyjypeCorrespondence
For instance, in the correspondences for thestCasel_TestLogst case(cf. Figure
10), there are two objects of typdéictivityCorrespondencene foractivityl and the
other one for activity2 as shown inFigure 2, which correspond to activities
loginScenari@nd equalsboth in the original and migrated applicatignas explain in
Section3.1.3 Then, since both activities have one output, it is also needed to indicate
the type returned in such outputs, what is done by objects of type
TypeCorrespondencés we can see lrigurel0, the former activity returns @ object
of type String while the latter returnsraobject of typeBoolean both in the original
and migrated applications
Similarly, in the correspondences for TestCase2 TestFindltem and
TestCase3 CreateCustomécf. Figure 11 and Figure 12), objects of types
ActivityCorrespondencalso exist. In these examples, we can see how we can also
specify complex types for the returning values of the activities. For instaiotiejtyl
has as output typdtem in TestCase2_TestFindltemhile activityl has & output type
Customeiin TestCase3 CreateCustomer

1 PropertyCorrespondencdén UML activity diagrams, it is common have actions
whose purpose is to extract a property of an object. They are called
ReadStructuralFeatureAction The purpose of the objects of type
PropertyCorrespondenc& the correspondences model is to indicate what is the
property that we want to extract, as well as its type (output type of the action) and the
type of the object from where we want to extracheé property (input type of the
action). There is an object of typ@ropertyCorrespondenda the correspondences
model for TestCase2_TestFindltetast case (cf.Figure 11) for the getPropertyl
generic action shown in the generic test casé-igure3. We can see ifrigurell that
the name of the property we want to extractiigme,whose type is String as indicated
by the TypeCorrespondender the output port putput_getPropertyl There is also a
TypeCorrespondender indicating the type ofhe input object, which istem.

1 ValueCorrespondencén UML activity diagrams, there are actions to create values,
namelyValueSpecificationActio hey are very useful for creating values in test cases.
For eachValueSpecificationActigrwhich arevaluel in the genericTestCasel(cf.
Figure2), valuelin the genericTestCaseZcf. Figure3) andvalueland value2in the
genericTestCasef&f. Figure4), we need an object of typ€alueCorrespondende the
correspondence model indicating the value given to the activity, and an object of type
TypeCorresponaee indicating the type of the value created (€figurel0, Figurell
andFigurel?).

1 ParameterCorrespondencén all generic test cases, in order to be able to compare
their results, we need Rarameterthat contains the object returned bthe test case
The type of such objectcan be either of a simple type(as indicated in the
correspondences model ¢figurel0 and Figurell) or of a complex type (such as type
Customeras indicated inFigurel12). This type must be indicated imbjects of type
ParameterCorrespondence

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page?22 of 39

D11.1¢ Methodology and techniques for deriving test

cases from models Version: 1.@; Final, Date: 31/02015

As a clarification, please note that it is only needed to define the type of the input of an action
when the action is of typd&rkeadStructuralFeatureActipme., it is only needed to define an

object of typeTypeCarespondencéor identifying the input type of an action whenever we are
dealing with an object of typBropertyCorrespondencas we have shown Figurell.

ﬁst&]sel \

T E output_activityl

ffffffffffffffff (o B

inputl_activity2 output_a ctliw'ty?

= activity2 2 resultl

input2_activity2
|

output_valuel -+-------------oooon

Ezn

Correspondences_Model_Pestore

d o+
1 TestCasel‘_TestLogm T

N

‘
]
i
testCases i
‘

]
T
I
]
]
]
]
I
]
]
]
I
]
'
T
]
I
]
]
]

i ! i
activityCorresp:ondencesE valueCorrespondences paqameterCor:respondences
genActivity: activityl i genActivity: activity2 genValue: valuel E gen Parameter: resultl
legActivity: loginScenario 1| legActivity: equals legValue: 1 | | legType: Boolean
1]
migActivity: IPginScenario '| migActivity: equals migValue: 1 ' | migType: Boolean
i | :
typeCorresponda:nces ypeCorrespondences typeCorresponidences
-~ genNode: output_activityl genNode: output_activity2 genNode: output_valuel E
legType: String legType: Boolean legType: Integer :
migType: String migType: Boolean migType: Integer

FigurelO¢ View of theCorrespondences_Model_Pestarentaining theTestCasel_TestLodiest caseas well as
the mapping with the generic test case

‘ Correspondences_Model_Pestore

testCases
)
1 TestCase2_TestFinditem T
_ activityCorrespondences |, va\ueCorrespondences_l propertyCorrespondences| parameterCorrespondences|
genActivity: activityl genActivity: activity2 genValue: valuel genProperty: getPropertyl genParameter: result1
legActivity: findltemScenario legActivity: equals legValue: Poodle legProperty: name legType: Boolean
migActivity: fiAndItemScenario migActivity: equals rnigVaIueA: Poodle migPropertv:‘name migType: Boolean
+ +
|, typeCorrespondences |typeCorrespondences typeCorrespondences typeCorrespondences
genNode: output_activityl genNode: output_activity2 genNode: output_valuel genNode: input_getPropertyl genNode: cutput_getPropertyl
legType: Item legType: Boolean legType: String legType: Item legType: String
migType: ltem migType: Boolean migType: String migType: ltem migType: String

Figurell ¢ View of theCorrespondences_Model_Petstorentaining theTestCase2_TestFindlterast case

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page?23 of 39

D11.1¢ Methodology and techniques for deriving test

cases from models

Version: 1.@; Final, Date: 31/02015

Correspondences_Model_Pestore

ry

testCases

activityCorrespondences

+
T TestCase3_CreateCustomer T

J§

\L valueCorrespondences J/ parameterCorrespondences

genActivity: activityl
legActivity: createCustomer
migActivity: crAeateCustomer

genValue: valuel
legValue: John
migValue: John

genValue: value2
legValue: john_pass
migValue: j‘ohn_pass

genParameter: resultl
legType: Customer
migType: Customer

Lype(ﬁorrespondences

typeCorrespondences

genNode: output_activityl
legType: Customer
migType: Customer

genNode: output_valuel
legType: String
migType: String

genNode: output_value2
legType: String
migType: String

I typeCorrespondences

Figurel2¢ View of theCorrespondences_Model_Petstocentaining theTestCase3_CreateCustontest case

3.2.2.2 Behavioural Model z Activity Diagrams (Artefacts no 3 & 4)

TheBehavioual Model (Activity Diagrams) Original Applicati@ntefact number 3 ifFigure8,
represents the model of the original applicatig¢the PSM)that is obtained using the WP8

techniques, namely reverse engineering techniquggically, an activity diagram is composed

of actvities that include several different types of actioR®r instance,tere are actions that
call other activities in the diagram, actions that create values, or actiongdhata feature of

an object. A very smalixcerpt of the reverse engineered adty diagram for the Petstore
application is show inFigure 13. The Behavioual Model (Activity Diagrams) Migrated

Application artefact number 4 irFigure8, represents the model with the activity diagrams

after they have been manipulated in the forward engineering phase with pilmgose of
satisfying the migration goals.

ProjectTitle: ARTIST

Contract No. FR317859

Page?4 of 39

www.artist-project.eu

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

-
loginScenario
sessionld: String see

sessionld

lsessionld

=
etupCuston'ms

N
setupCustomers \

<

-
setupltems

name

item

Bulldog

A\ 4

v

item

login see
[
oodle Createltgn
password
Figurel3 ¢ Excerpt of activity diagram for the Petstore
ProjectTitle: ARTIST Contract No. FR317859

www.artist-project.eu
Page25 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

3.2.2.3 M2M Transformation & Abstract Test Suite (Artefact no 5)

This artefact is the central part of the prototype, since it deals with the conversion of generic
test cases into specifitest cases. With this process, we say that generic test cases get
instantiated into specific ones.

The modelto-model transformation takes as input the model with the correspondences and
the behavioural models with the activities for both the original anigrated applications, as
shown inFigure8. As output, it returns the behavioural models for both the original and
migrated applications enriched with the test casaccording to those specifieth the
correspondences model.

A flow chart of the transformation is depicted kigurel4. Thee are two main matched rules
(declaratie rules) in the transformatianVhile one takes the behavioural model of the original
application as input and produces the same model with specifictest cases integrated as
output, the other one does the same for the migrated application. These al#sread the
correspondences modglwhere the former rule deals with those attributes containing
correspondences for the original application and the latter rule deals with those for the
migrated applicationand check how many correspondences there @géned. Then, for each

of the correspondences, the rules call some lazy rules that are in charge of producing the
activitiesand actiongepresenting the specific test caséaurthermore, here are several other

lazy rules and helpers being called frone former lazy rules.

Please note that, in case model correspondences are not properly defined, the transformation
execution may produce errorgor instance, if there is a correspondence between a generic
action in the generic test case and an activity in the original application that does not exist, the
transformation shall return an error in its executid®imilarly, an error shall be producéu

case the correspondence model is missing a mapping.

Also note that, as specified in the artefact no J-igure8, the abstract test suite is integrated

in the M2M transformation. In fact, as mentioned before, the generic test cases cannot be
executed without a concrete scenario. They have no semantics, and represent simple
templates. Even though we have represented them as activities in Se@tib2 for
explanation purposes, the actions that appear in such activities lack specific semantics, and
they only make sense when they are instantiated in a concrete scer&uah istantiation is

done by the M2M transformationln any case, the representation of the generic test cases
with graphical activities, ashownin Section3.1.2 is wseful for the user to understand the
template and to be able to define the correspondences model.

3.2.2.4 Behavioural Model z Activity Diagrams with Test Suite integrated (Artefacts
no 6 & 7)

These models are the same as those presented in SeBtihA.2 however having integrated
specific test casesFor example, specific test cases of the revessgineered Petstore
application are shown iRigure5, Figure6 and Figure?.

3.2.2.5 Comparison of executions of Test Cases (Artefact no 8)

This artefact is a Java program that launches the fUML engine that executes the activity
diagrams of both the original and migrated dipptions.It defines aModelExecutopbject for

each activity diagram. These objects execute then the activity diagrams step by step
(ModelExecutor.executeStepwjseln this way, we can programmatically access what is
happeningduringthe execution of aatities representing specific test cases.

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page26 of 39

D11.1¢ Methodology and techniques for deriving test
cases from models Version: 1.@; Final, Date: 31/02015

We use JUnit (cf. Sectidl.]) to compare the values returned for the same test case in the
original and migrated applicationk this way, the program checks several thirgsh as the
value produced by the test casesnot null, the size of the returned values are the same, or
the content is the same. Checking the content is the same is performed quite
straightforwardy if the value returned is of a simple type, since only Assert.assertEquals
(valueOiriginal, vimeMigrated)method needs to be called.

However, the situation is different when we need to compare two objects ajraplextype.

In this case, thassertEqual®peration does not work, since we are comparing two different
instances.For this reasonwe iterate over the attributes of the objects returned by the test
case of the original and migrated applications. A comparison is then redtizé¢lde value of

each of the attributes. If all attributes have the same value in both sides, then we consider the
objectsto be equal

This program prints in the console the results of the assertions, as explain in Se2tih6

Figurel4 ¢ Flow chart of the M2M transformation

3.2.2.6 Report Printing (Artefact no 9)

This artefact represents the printing of the report comparing the values returned by the test
cases in both the original and migrated applicatidns the program described in Section
3.2.2.5 An example of a report of a successful comparison for the specific test cases shown in
Figureb, Figure6 and Figure7 in the Petstore applidéon is shown irFigurels.

| xkkxkrrxk TastCasel TestLogin [PE——— |

ProjectTitle: ARTIST Contract No. FR317859
www.artist-project.eu
Page?27 of 39

