
D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 1 of 57

ARTIST

FP7 - 317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

Deliverable D10.5.1

Inventory of common general-purpose artefacts

Editor(s): Burak Karaboga, Jesus Gorroñogoitia

Responsible Partner: Atos

Status-Version: V1.0

Date: 30/09/2014

Distribution level (CO, PU): PU

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 2 of 57

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable:
Inventory of common general-purpose artefacts
M24

Due Date of Delivery to the EC: 30/09/2014

Workpackage responsible for
the Deliverable:

WP10 ς Common migration artefacts provisioning
and management

Editor(s):

ATOS

Contributor(s): ATOS, SPIKES, ENGINEERING

Reviewer(s): Javier Troya

Approved by: All Partners

Recommended/mandatory
readers:

Consortium partners

Abstract: This report provides an inventory of all potentially
reusable artefacts produced in ARTIST and
identifies missing artefacts. The artefacts
themselves are published in the public repository

Keyword List: Model driven, artefact, repository, meta-model,
M2M transformation, M2T transformation, UML
profile

Licensing information: Generally EPL (open source), indicated otherwise.

The document itself is delivered as a description
for the European Commission about the released
software, so it is not public.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 3 of 57

Document Description

Document Revision History

Version Date Modifications Introduced

 Modification Reason Modified by

v0.1 26/08/2014 First version: main contribution from
WD 10.5a

ATOS, SPIKES

v0.2 01/09/2014 Added contribution on Security UML
Profile

ENG

v0.3 08/09/2014 Added all contributions, including
Executive Summary and Conclusion
section. Review of other sections.

ATOS

v0.4 15/09/2014 Peer-Review Version ATOS

v1.0 30/09/2014 Final Version ATOS

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 4 of 57

Table of Contents

Table of Contents .. 4

Table of Figures ... 5

Table of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 9

1 Introduction ... 11

1.1 About this deliverable ... 11

1.2 Document structure... 11

1.3 Main innovations ... 11

2 Reusable general-purpose artefact in Model-Driven Engineering 13

3 Use case driven requirements for an inventory of common general-purpose artefacts
 15

4 Existing MDE reusable general-purpose artefacts .. 19

4.1 Repositories of MDE content .. 19

4.2 M2M transformations.. 21

4.3 UML profiles / Modeling languages ... 22

5 ARTIST common general-purpose artefacts ... 29

5.1 UML profiles ... 29

5.2 Meta-models ... 42

5.3 M2M transformations.. 44

5.4 M2M libraries ... 45

5.5 M2T transformations .. 48

5.6 Models .. 48

6 Installation and usage ... 49

6.1 Installation ... 49

7 Conclusions .. 52

8 References .. 53

9 Appendix A ... 55

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 5 of 57

Table of Figures

FIGURE 1 STEREOTYPE DEFINITIONS FOR SOA PROFILE - PART I (TAKEN FROM [11]) 23
FIGURE 2 STEREOTYPE DEFINITIONS FOR SOA PROFILE PART II (TAKEN FROM [11]) 24
FIGURE 3 SYSML PACKAGE STRUCTURE (TAKEN FROM [12]) .. 25
FIGURE 4 AN EXAMPLE USAGE OF RATIONALE RELATIONSHIP (TAKEN FROM [12] .. 25
FIGURE 5 UML PROFILE FOR UML/EJB MAPPING SPECIFICATION (TAKEN FROM [15]) 27
FIGURE 6 IFML ESSENTIALS (TAKEN FROM [16]) .. 28
FIGURE 7 DIAGRAM OF ANNOTATION UML PROFILE ... 29
FIGURE 8 REDUCED VERSION OF PERSISTENCE DIAGRAM ... 30
FIGURE 9 REDUCED VERSION OF THE WEB TIER DIAGRAM .. 30
FIGURE 10 REDUCED VERSION OF THE WEB TIER DIAGRAM .. 31
FIGURE 11 REDUCED VERSION OF THE WEBSERVICE DIAGRAM .. 31
FIGURE 12 DIAGRAM OF RCP UML PROFILE ... 33
FIGURE 13 DIAGRAM OF GUI UML PROFILE (VIEW I) ... 35
FIGURE 14 DIAGRAM OF GUI UML PROFILE (VIEW II) .. 36
FIGURE 15 DIAGRAM OF DATAMANAGEMENT PROFILE .. 37
FIGURE 16 DIAGRAM OF .NET PROFILE ... 38
FIGURE 17 DIAGRAM OF MICROSOFT SHAREPOINT PROFILE .. 39
FIGURE 18 DIAGRAM OF MICROSOFT VISIO PROFILE .. 39
FIGURE 19 DIAGRAM OF JAAS PROFILE ... 41
FIGURE 20 PACKAGE MANAGEMENT PROFILE ... 42
FIGURE 21 TRANSFORMATIONPARAMETERS META-MODEL .. 43
FIGURE 22 AN EXAMPLE MODEL CONFORMING TO TRANSFORMATIONPARAMETERS 43
FIGURE 23 RSDL META-MODEL ... 44
FIGURE 24 GWT PDM .. 48
FIGURE 25 ARTEFACTS FOLDER STRUCTURE .. 50
FIGURE 26 UML MODEL MERGING PLUGIN PROJECT STRUCTURE .. 55
FIGURE 27 CONTEXT MENU TO ACCESS MERGING FEATURE ... 56
FIGURE 28 MODEL MERGING CONFIRMATION DIALOG ... 56
FIGURE 29 MODEL MERGING PROGRESS DIALOG .. 57
FIGURE 30 MODEL MERGING COMPLETION NOTIFICATION DIALOG .. 57
FIGURE 31 MERGED MODEL ... 57

Table of Tables

TABLE 1 TABLE OF ARTEFACTS .. 15

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 6 of 57

Terms and abbreviations

ASP Active Server Pages

ATL Atlas Transformation Language

AWT Abstract Window Toolkit

BLOB Binary Large Object

BPMN Business Process Modeling Notation

CT Cloudification Tool

DSML Domain-Specific Modeling Language

EAI Enterprise Application Integration

EC European Commission

EJB Extended Java Beans

EMF Eclipse Modeling Framework

ER Entity Relationship

GAE Google App Engine

GML Goal Modelling Language

GUI Graphical User Interface

GWT Google Web Toolkit

HOT Higher-Order Transformation

IFML The Interaction Flow Modeling Language

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAAS Java Authentication and Authorization Service

JSP Java Server Pages

KDM Knowledge Discovery Meta-model

LoB Line of Business

M2M Model to Model

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 7 of 57

M2MT Model to Model Transformation

M2T Model To Text

M2TT Model to Text Transformation

MARTE Modeling and Analysis of Real-Time and Embedded Systems

MBT Model Based Testing

MDD Model-Driven Development

MDE Model-Driven Engineering

MDT Model Discovery Toolbox

MUT Model Understanding Tool

MVC Model View Controller

OCL Object Constraint Language

OMG Object Management Group

OO Object Oriented

PDM Platform Domain Model

PI Platform Independent

PIM Platform Independent Model

PS Platform Specific

PSM Platform Specific Model

QVT Query View Transformation

RCP Rich Client Platform

REST Representational State Transfer

RSDL RESTfull Service Description Language

SOA Service Oriented Architecture

SOAML Service Oriented Architecture Modelling Language

SOAP Simple Object Access Protocol

SOTA State of the Art

SWT Standard Widget Toolkit

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 8 of 57

SysML Systems Modelling Language

TGT Target Generation Tool

UI User Interface

UML Unified Modelling Language

UTP UML Testing Profile

WS Web Service

WSDL Web Service Definition Language

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 9 of 57

Executive Summary

Model-Driven Engineering (MDE) artefacts, namely meta-models, UML profiles, M2M
transformations or M2T transformations are potentially highly reusable. They can be applied in
many different domains to support the MDE-driven modernization or migration of different
applications that show similar characteristics. Their potential reusability will depend on how
generic or specific the MDE artefacts are or their capabilities for extensibility.

Most of the ARTIST MDE-based tools require reusable MDE artefacts to be operative. As an
example, models obtained by model discovery and understanding tools will require specific
profiles to further characterize the software entities they represent or M2M transformations
to obtain several views addressing multiple concerns at different levels of abstraction.
Similarly, modernization tools will require άcloudificationέ and optimization patterns expressed
as M2M transformations, but also additional profiles. Although some generic MDE artefacts
will be packaged within these tools, not all the domain-specific MDE artefacts required to
instantiate the ARTIST use cases will be provided within those packages but through a
provision of them available in the ARTIST Repository. This provision of domain-specific (but
also some generic) MDE artefacts into the ARTIST repository is managed by T10.4 and reported
in this document.

The purpose of this document is to conduct a survey on the State of the Art (SOTA) analysis of
the MDE artefacts relevant for the ARTIST project, to identify and collect common general-
purpose artefacts created in the context of ARTIST and provide a detailed description for each
artefact as well as their installation and usage details.

The document starts defining the concept of reusable general-purpose artefact in MDE, what
the potential of reuse for these artefacts is and how they can be reused. MDE artefacts are by
nature highly reusable within a family of existing applications that are compliant to common
technologies or frameworks. For example, a set of profiles describing J2EE and their common
development frameworks can be used for the model abstraction of multiple J2EE applications,
enabling the tagging of J2EE elements on the model. {ƛƳƛƭŀǊƭȅΣ ǎǇŜŎƛŀƭƛȊŀǘƛƻƴ ƻŦ άŎƭƻǳŘƛŦƛŎŀǘƛƻƴέ
patterns for concrete technologies (.NET, J2EE) from generic ones can be applied on the
migration of concrete application aspects (i.e. persistence, performance, security, etc.).

The provisioning of reusable MDE artefacts initially requires an elicitation of end-user needs, in
order to identify those artefacts more demanded for a wider range of users. For practical
reasons, we consider to restrict this elicitation to the requirements identified within the
ARTIST use cases, assuming they are representative enough of a wider range of use cases
covering the migration to Cloud of diverse non-Cloud compliant applications. Thus, we can
assume these required artefacts can constitute an initial set for populating the ARTIST
repository, aiming at boosting the adoption of ARTIST methodology and tools.

This provisioning should also consider the current SOTA by conducting a survey analysis on
available and reusable MDE artefacts in order to reuse or extend them, alleviating the cost of
producing new artefacts from scratch. This survey not only identifies general-purpose
reusable artefacts but also other attempts to provision repositories of MDE artefacts, focusing
on the content (and not on the repository features). In our survey, we have identified two
main MDE repositories and dozens of artefacts, some of interest for ARTIST use cases, some
very generic (i.e. general-purpose UML profiles), and some quite academic or very specific for
concrete usages not required in the ARTIST use cases. Excepting few cases, most of these
found artefacts have not been reused in the implementation of the ARTIST use cases yet, but

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 10 of 57

their potential is not negligible (i.e. IFML, SOAML, SysML, etc.). Possible usages and extensions
for these concrete existing artefacts are discussed in the text as well.

The remaining of the document collects and describes reusable domain or platform-specific
MDE artefacts that have been specifically implemented to fulfil the needs of the ARTIST use
cases, because no alternative existing artefacts have been produced. These artefacts have
been used in different phases of the ARTIST migration processes together with some ARTIST
tools. In some cases, these artefacts are integrated within (and used by) other more generic
artefacts shipped within the tools that were implemented in WP5-WP9. The domain-specific
artefacts described in this document are intended to personalize these generic tools to the
concrete domains and platforms required in the use cases. For instance, a component model
generator included in the Model Understanding Toolbox (MUT) can use platform-specific
profiles (RCP, J2EE) to obtain RCP and J2EE component models.

A number of artefacts of different types have been collected in this document, mostly
platform-specific UML profiles and M2M transformations and libraries. M2T transformations
have been produced as well, but considering that they are quite specific for code generation,
they have mostly been reported in [27]. For every artefact, we discuss its domain of
applicability and reusability (alone or composed with other artefacts).

The current set of provisioned ARTIST MDE artefacts is still incomplete and their proper linkage
to other existing MDE standardized artefacts unstudied. Hence, further analysis and
developments are required in other to provision an initial population of the ARTIST repository
that boost a wider adoption of the ARTIST methodology and tooling support. This work will
continue until M30, when a new bundle of the ARTIST reusable artefacts will be released.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 11 of 57

1 Introduction

1.1 About this deliverable

The purpose of this document is to conduct a survey on the State of the Art (SOTA) analysis of
the Model-Driven Engineering (MDE) artefacts relevant for the ARTIST project, identifying and
collecting the common general-purpose artefacts created in the context of ARTIST and provide
a detailed description for each artefact as well as their installation and usage details.

SOTA analysis focuses on the existing reusable general-purpose artefacts in MDE, describing
the contents of relevant repositories of MDE, Model-to-Model (M2M) transformations, UML
profiles and other modeling languages. The common general-purpose artefacts that are
created in the context of ARTIST are defined as: UML profiles, meta-models, M2M
transformations, M2M libraries and Model-to-Text (M2T) Java generation templates.

1.2 Document structure

After this introduction, Section 2 with defining the concept of reusable general-purpose
artefact in MDE, what is the potential of reuse for these artefacts and how can they be reused.
Then, Section 3 identifies and describes potential common reusable MDE artefacts, both
general-purpose and domain-specific ones that could be required by ARTIST use cases. This
section also offers a table of foreseen MDE artefacts collection with a short description for
each artefact and potential use.

Section 4 focuses on describing the existing MDE reusable general-purpose artefacts derived
from the SOTA analysis of MDE in three subsections, devoted to: Repositories of MDE content,
M2M transformations and UML profiles/ Modeling languages. Each M2M transformation and
UML profile/Modeling language description is followed by a potential usage in the context of
ARTIST. The UML profiles/Modeling languages are also provided with a diagram if available.

Section 5 describes the common general-purpose artefacts that are created in the context of
ARTIST in subsections: UML profiles, Meta-models, M2M transformations, M2M libraries and
M2T Java generation templates. A description and potential usage information for each
artefact can be found in these subsections.

Before concluding with Section 7 describing current coverage of ARTIST use cases and future
work scheduled for next release, Section 6 contains information about how to install the
inventory of common general-purpose artefacts and how to use these artefacts in the MDE
context.

Finally, Appendix A provides instructions to install and use a UML model merging tool
developed by reusing a model merging M2M transformation described in section 5.5,
providing an example of reusing MDE to provide additional tools.

1.3 Main innovati ons

The main innovation brought by the work described in this document is the provisioning of a
collection of reusable, extendable, general-purpose and domain/platform-specific MDE
artefacts required for the materialization of the ARTIST use cases, provided that they are input
artefacts required by some ARTIST methodology tasks. Although few required artefacts have
been obtained through the initial survey on the SOTA, most of them have been either
developed from scratch or by extending some of those artefacts already provisioned by the
SOTA survey. This approach for provisioning new required artefacts, by extending (or

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 12 of 57

customizing) existing ones, shows best practices for attaining a sustainable repository of
community-maintained MDE artefacts.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 13 of 57

2 Reusable general -purpose artefact in Model -Driven
Engineering

In Model-Driven Engineering (MDE), software entities such as packages, classes, interfaces,
attributes or methods are represented by models, which are instances of domain-specific
modeling languages (DSML) or meta-models [1]. MDE promotes working with models at
different levels of detail, either platform-specific (e.g. PSM) or platform-independent (e.g.
PIM). Additionally, models can be further specialized by using meta-modeling extension
techniques, such as ECORE or UML profiles. MDE enables transforming between model
instances of the same or different meta-models, using model-to-model (M2M) transformation
techniques. Furthermore, PSMs representing software can be transformed as well into textual
representations, such as compilable code using model-to-text (M2T) transformations.

All these MDE artefacts, namely meta-models, UML profiles, M2M transformations or M2T
transformations are potentially highly reusable. They can be applied in many different domains
to support the MDE-driven modernization or migration of different applications that show
similar characteristics. Their potential reusability will depend on how generic or specific the
MDE artefacts are or their capabilities for extensibility. On these regards, we can consider two
main kinds of reusable MDE artefacts:

ǒ Generic MDE artefacts, valid for supporting MDE techniques on any domain or on a
wide range of domains, such as for example: the UML meta-model, an UML ATL
library, ATL M2M transformations applying άcloudificationέ or optimization patterns,
or a SySML profile.

ǒ Domain-specific MDE artefacts, valid for supporting MDE techniques on concrete
domains, such as for instance: a J2EE or .NET profile or M2M ATL transformations
applied to Eclipse RCP applications.

Most of the ARTIST MDE-based tools require reusable MDE artefacts to be operative. As an
example, models obtained by model discovery and understanding tools will require specific
profiles to further characterize the software entities they represent, or M2M transformations
to obtain several views addressing multiple concerns at different levels of abstraction.
Similarly, modernization tools will require άcloudificationέ and optimization patterns expressed
as M2M transformations, what implies the application of additional profiles. Although some
generic MDE artefacts will be packaged within these tools, not all the domain-specific MDE
artefacts required to instantiate the ARTIST use cases will be provided within those packages,
but through a provision of them available in the ARTIST Repository. This provision of domain-
specific (but also some generic) MDE artefacts into the ARTIST repository is managed by T10.4.

To conclude this section, the next list describes the different kinds of typically reusable MDE
artefacts that will populate the repository:

ǒ Meta-models are conceptualizations of the world (or part of it) describing the main
concepts of it and their relationships. They are used to specify a domain-specific
modeling language (DSML) whose vocabulary is used to create concrete model
instances representing that world. In ARTIST, the baseline meta-model is UML,
although other meta-models (i.e. Java or KDM) are used too. Using EMF Ecore, users
can create any other meta-models.

ǒ Profiles are collections of related concepts (e.g. stereotypes) and their properties,
representing a concrete domain or concern, supporting the extension of existing meta-
models with concepts of that domain or concern. Both UML and Ecore meta-models
support extensibility through profiles.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 14 of 57

ǒ M2M transformations are mappings (they can be imperative, declarative, or a mixture
of both) between meta-models that describe the way entities of a source meta-model
are transformed into entities of a target meta-model. In ARTIST, M2M transformations
are typically defined using the hybrid ATL transformation language. These
transformations, when applied to a (set of) source model(s) (conforming to the source
meta-model(s)) obtain a (set of) target model(s) (conforming to the target meta-
model(s)).

ǒ M2T transformations are conceptually similar to M2M transformations, but the target
meta-model is a specification of a textual document. Therefore, they convert an
instance model into a textual document (i.e. XML configuration file, a source code file,
etc.). In ARTIST, M2T transformations are implemented with frameworks such as
Acceleo [2].

ǒ Transformation libraries are collections of reusable functions (such as ATL helpers) to
be embedded and used within M2M or M2T transformations.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 15 of 57

3 Use case driven requirements for an inventory of common
general -purpose artefacts

This section identifies and describes potential common reusable MDE artefacts, both general-
purpose and domain-specific ones that could be required by ARTIST use cases.

Next table collects this collection of foreseen MDE artefacts. For each artefact it is given a
name, a short description, and possible identified usage and target use case.

Based on this elicitation of requirements for the provision of MDE artefacts, T10.4 will manage
the creation and provision of these artefacts, released on M24 (this document) and M30.

The provision of these artefacts will consider the public availability of those that could be
reused, extended or that could influence the development of required new artefacts from
scratch.

Table 1 Table of artefacts

Artefact
Name

Description Possible usages Reusable
in UC

Type

J2EE Profile Specification of Java
Enterprise Edition
main concepts

- Platform-specific (high
level) characterization of
J2EE based applications or
systems
- Identification of high
level components
-άCloudificationέ and
optimization patterns
-Deployment support

Petstore,
DEWS,
SPCoop

Profile

J2EE
Descriptors
profile

Characterization of JEE
descriptors

-Identification of high-
level components
-Target generation
-Deployment support

Petstore,
DEWS,
SPCoop

Profile

SOA profile Specification of Service
oriented concepts

- Platform-independent
(high-level)
characterization of
services (WS, REST, etc.)
-άCloudificationέ and
optimization
transformations

Petstore,
DEWS,
SPCoop

Profile

MVC profile Characterization of
platform-independent
Web MVC pattern

-Platform-independent
(high-level)
characterization of Web
(client-server) applications
-άCloudificationέ and
optimization
transformations
-Deployment support

Petstore,
DEWS,
SPCoop

Profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 16 of 57

RCP profile Characterization of
platform-independent
RCP applications

-Platform-independent
(high-level)
characterization of RCP
applications (typically
most of desktop based
applications)
-άCloudificationέ and
optimization
transformations

DEWS Profile

Eclipse RCP
Descriptors
profile

Characterization of
Eclipse RCP descriptors

- Identification of Eclipse
RCP contributions to the
workbench

DEWS Profile

Data storage
profile

Characterization of
platform-independent
data storage
management,
including data models,
data persistence, data
storage

-Platform-independent
(high-level)
characterization of data
persistence
-άCloudificationέ and
optimization
transformations

Petstore,
DEWS,
SPCoop

Profile

Design pattern
profiles

Characterization of
other platform-
independent
architectural patterns:
i.e. Observable,
Publish/Subscribe, etc.

-Platform-independent
(high-level)
characterization of data
persistence
-άCloudificationέ and
optimization
transformations

ALL Profile

.NET Profile Characterization of
main .NET concepts

- Platform-specific (high-
level) characterization of
.NET based
applications/systems
- Identification of high-
level components
-άCloudificationέ and
optimization
transformations
-Deployment support

LoB,
NewsAsset

Profile

MS Sharepoint
Profile

Characterization of
main Sharepoint
concepts

- Platform-specific (high-
level) characterization of
.NET based
applications/systems
- Identification of high-
level components
-άCloudificationέ and
optimization
transformations
-Deployment support

LoB Profile

.NET
Descriptors
profile

Characterization of
.NET descriptors

-Identification of high-
level components
-Target generation
-Deployment support

LoB,
NewsAsset

Profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 17 of 57

J2EE
Component
detection
patterns

Detection of J2EE
components

-Identification of high-
level components

Petstore,
DEWS,
SPCoop

M2MT

.NET
Component
detection
patterns

Detection of .NET
components

-Identification of high-
level components

LoB,
NewsAsset

M2MT

SOA-detection
pattern

Identification of
services, either
exposed as WS or REST

-Identification of high-
level components
-άCloudificationέ and
optimization patterns

DEWS,
SPCoop

M2MT

Service
Cloudification
patterns

Exposition of
component interfaces
as services

-άCloudificationέ and
optimization patterns

DEWS, LoB M2MT

Data
persistence
optimization
patterns

Domain-specific (JEE,
.NET) optimization of
data persistence
including:
- data schema
optimization
- querying
optimization
- data management
pattern optimization
- data management
isolation and
segregation
- data storage
reconfiguration, etc.

-άCloudificationέ and
optimization patterns

ALL M2MT

SWT2GWT
cloudification
patterns

άCloudificationέ of
desktop RCP clients,
using GWT
modernization
approach

-άCloudificationέ and
optimization patterns

DEWS M2MT

Sharepoint
dependencies
detection
patterns

Decoupling of LoB
from Sharepoint

-Identification of high-
level components
-άCloudificationέ and
optimization patterns

LoB M2MT

Domain-
specific
optimization
patterns

Domain-specific (J2EE,
.NET) optimization of
generic patterns:
observer,
publish/subscribe, etc.

-άCloudificationέ and
optimization patterns

ALL M2MT

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 18 of 57

Platform-
specific
configuration
descriptors
profile

Contains mainly
additional
configuration
information needed in
the deployment of the
application. Different
versions for the
different platforms
(GAE, AZURE,
AMAZON, ...)

-Deployment support ALL Profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 19 of 57

4 Existing MDE reusable general -purpose artefacts

This section describes the state of the art on the reusable artefacts that exist in the MDE
domain and are relevant for the implementation of ARTIST use cases (both general-purpose
and domain-specific artefacts). This SOTA survey identifies the current baseline of reusable
MDE artefacts, aiming to:

¶ Provision an initial set of reusable MDE artefacts, identifying those already available
that could be used on concrete tasks during the migration of ARTIST use cases.

¶ Facilitate the knowledge around existing MDE artefacts and repositories, promoting
their usage.

¶ Facilitate the creation of new MDE artefacts, by relying on existing ones, which can be
extended to work on other domains or scenarios, thanks to MDE extension
mechanisms1.

¶ Boost the adoption of ARTIST methodologies and techniques offering an initial set of
MDE artefacts.

4.1 Repositories of MDE content

There are several online collaborative repositories that have been created to support MDE
related research and implementation offering problem-specific artefacts. In this section, some
of these repositories are examined in detail and the artefacts that prove to be most valuable in
the context of ARTIST are described in detail.

Atlas Meta-model Zoos

AtlandMod Meta-model Zoos [3] are a collaborative open source research effort offering a
repository of modeling related materials intended to produce experimental material that may
be used by all in the domain of Model-Driven Engineering. The repository consists of more
than 300 meta-models focusing on various programming languages, business processes,
software methodologies, etc. Meta-models that are considered to be remarkable within the
context of ARTIST are listed below:

ǒ EAI: Meta-model describing the structure of Enterprise Application Integration (EAI).
Please see OMG UML Profiles for more information.

ǒ EclipseLaunchConfigurations 1.0: This generic meta-model simply describes Eclipse
launch configurations. This meta-model might be used to create transformations to
transform existing launch configurations of ATL transformations to Ant2 or QVT scripts
in order to create transformation chains.

ǒ SecureUML 1.0: This meta-model describes SecureUML, a UML-Based Modeling
Language for Model-Driven Security. This meta-model might be useful in cases where
security is included as a goal for a legacy application.

ǒ SysML: See OMG UML Profiles in section 4.3 for further description.
ǒ WSDL 1.0: This basic meta-model describes a part of the Web Service Description

Language (WSDL) which may be used in cases where WSDL files are needed to be
transformed into UML models.

ǒ Web Applications - Conceptual Model: This meta-model fragment describes a
complete conceptual model for web applications. The meta-model might be used to

1
 For instance, meta-modeling import, UML profile extension mechanism, M2M transformation

composition, etc.
2
 See ant.apache.org/

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 20 of 57

form a basis for a potential UML profile to define UML stereotypes for web
applications.

ǒ Maven (project.xml) 0.3: A meta-model describing the file project.xml of the build tool
Maven. This meta-model might be very useful in the process of model understanding
where information of dependencies of a legacy application might be derived from a
maven xml file.

ǒ Maven (maven.xml) 0.3: A meta-model describing the file maven.xml of the build tool
Maven. See above for potential usage.

ǒ J2SE5: This meta-model describes all the structural concepts of Java 5 source code
(from packages up to method invocations and comments) and links between code
elements (method invocations, variables usage, class inheritance, etc.). The aim of this
meta-model is to provide support in reverse-engineering Java applications or migrating
existing applications to Java.

ǒ UML for OO Class Modeling: This meta-model describes a subset of UML, third
generation modeling and specification language. The UML represents a compilation of
best engineering practices which have proven to be successful in modeling large,
complex systems, especially at the architectural level. This meta-model exclusively
focuses on object-oriented class modeling.

ReMoDD ς Repository for model-driven development

The Repository for Model-Driven Development (ReMoDD) [4] is a resource that aims to
support the work of researchers and educators in the Model-Driven Development (MDD)
community. This collaborative repository offers researchers and practitioners a platform on
which they can share exemplar models, illustrative descriptions of modeling methodologies
and techniques, detailed modeling case studies and other forms of modeling experience and
knowledge. Most relevant artefacts for the ARTIST in this repository are listed below.

ǒ RELAX/SysML/KAOS: The purpose of the artefact is to divide requirements into
invariant and relaxed ones and then, using the correspondence rules b/w Relax and
SysML/Kaos, obtain goal models to take advantages of the goal-oriented requirements
engineering concepts. This artefact might provide some assistance on the
development of the ARTIST Goal Modeling Language (GML).

ǒ ER 2 RE Meta-model: ER2RE is a meta-model describing a model transformation from
an entity-relationship schema to a relational model. This meta-model may be used in
transformations where an entity-relationship schema/model of the application is
present.

ǒ A Catalog of UML Model Transformations: This document presents a set of model
transformations on UML class and state machine models, as a preliminary version of a
compǊŜƘŜƴǎƛǾŜ ŎŀǘŀƭƻƎǳŜ ŦƻǊ ǳǎŜ ǿƛǘƘ ¦a[ŘŜǾŜƭƻǇƳŜƴǘΦ Lǘ ƛǎ ƻũŜǊŜŘ ŀǎ ŀ ŦǊŜŜ
resource to UML developers. Each transformation is provided with an explanation of
its purpose, examples of its use and conditions necessary for its correct use. The
transformations offered in this catalogue might be included in the ARTIST repository
and/or may be investigated to improve the existing transformations.

ǒ Aspect Oriented Modeling for Performance Evaluation with UML+MARTE, LQN and
CSM: [4] proposes a multi-paradigm modeling approach which aims to derive
performance models from software models of enterprise SOA systems, in order to
evaluate their run-time performance from the early development phases. This helps to
choose between different architecture, design, and configuration alternatives in order
to meet the performance requirements. The source models of the proposed
transformation are the platform independent model of the service-oriented system,

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 21 of 57

the deployment diagram and the platform aspect models. The approach in [53] might
ōŜ ŀǇǇƭƛŜŘ ǘƻ ǘƘŜ ƭŜƎŀŎȅ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƳƻŘŜƭ ǘƻ ŜǾŀƭǳŀǘŜ ǘƘŜ ŎǳǊǊŜƴǘ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ
the system as well as to the model of the system on the post-migration phase to
measure the performance delta.

4.2 M2M transformations

Software Languages Lab, Vrije Universiteit Brussels

The Software Languages Lab [5] offers a SVN3 site [6] where we can find several
transformations using different meta-models. We divide these transformations in different
groups depending on whether they are based on UML2 or not.

Based on UML2:

These are transformations that use as input and output an UML2 model. It is interesting to
note that they all use the EMFTVM compiler for ATL instead of the regular ATL compiler, so for
them to work you need to install EMFTVM.

There is a main transformation here called UML2Copy and then a few other transformations
that can be superimposed to this one. UML2Copy will copy all the elements from the input
model to the output model, which is really interesting in our case because many times we
want to just make a few changes to a certain model so we can superimpose this
transformation and keep all the information we did not want to change untouched.4

Then there are a few other transformations that superimpose this UML2Copy transformation,
some of them implement different profiles and others focus on applying some more specific
changes to the model.

Another interesting transformation is called UML2ToJava5; it will transform a UML2 model into
Java code.

Non-UML2 based:

EModelCopyGenerator is a very interesting transformation that was used to generate the
UML2Copy transformation. This is a so-called Higher-Order Transformation (HOT) since it
generates another ATL transformation that will copy all the elements of a model according to a
specific meta-model that will be used as input of the EModelCopyGenerator.

ATL Transformation Zoo

ATL Transformation Zoo [7] hosts 103 properly documented transformations written in ATL
covering a wide range of M2M transformation cases, proving to be a valuable resource both
for reuse and experimentation. Most interesting transformations in the context of ARTIST are
listed below.

3
 Apache Subversion: http:/subversion.apache.org

4
 This approach is similar to the concept of IN-PLACE transformation. In this case, the input and output

meta-models are the same, and, instead of producing a new model from scratch (such as in the case
above mentioned), it is the input model which evolves until you get the output one. Nevertheless, in-
place engines are still not very developed
5
http://soft. vub.ac.be/viewvc/UML2CaseStudies/uml2cs-

transformations/transformations/UML2ToJava.atl?view=log

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 22 of 57

ǒ Ant to Maven: This transformation provides a set of rules to transform an Ant build to
a Maven build file. The transformation would be a good starting point to implement an
Ant to Maven transformation for a non-cloud application which uses ant as a build tool
and is targeted to be migrated towards a cloud provider.

ǒ UML to Java: The UML to Java example describes the transformation of a UML model
to a simplified Java model. The Java model holds the information for the creation of
Java classes, especially what concerns to the structure of these classes, namely the
package reference, the attributes and the methods. This transformation may be used
as an intermediate step for a transformation chain in the context of ARTIST.

ǒ UML Singleton: A simple transformation that adds a static "getInstance"
Operation/Method and a static "instance" Attribute to each Class with a "Singleton"
Stereotype. The rules and the profile in this transformation might be used in a case
where singleton pattern is required for a migration candidate.

ǒ UML Class Diagram to UML Profile: This ATL scenario transforms a UML2 Class Diagram
into a UML2 Profile. Some rules of this transformation may be adopted to implement a
transformation to create or alter UML profiles for ARTIST.

4.3 UML profiles / Modeling languages

This section contains a collection of UML profiles and modeling languages specifications from
different sources which have good potential to be useful in the implementation of ARTIST.
Both profiles and languages that are listed below mostly focus on specialized problems,
providing ARTIST a valuable knowledge base.

OMG UML Profiles

ǒ ¦a[tǊƻŦƛƭŜ ŦƻǊ 9ƴǘŜǊǇǊƛǎŜ !ǇǇƭƛŎŀǘƛƻƴ LƴǘŜƎǊŀǘƛƻƴ ό9!LύΥ ά!ǎ ŜƴǘŜǊǇǊƛǎŜǎ ŀŘŀǇǘ ǘƻ
business change and new opportunities, they seek to build on their existing strengths
and assets for competitive advantage. Electronic trading with consumers and other
businesses is one of these trends. This frequently entails building new applications by
coupling existing ones, which is known as Enterprise Application Integratiƻƴ ό9!LύΦέ [8].
The ¦a[tǊƻŦƛƭŜ ŦƻǊ 9!L ƻŦŦŜǊǎ ŀ ǎƻƭǳǘƛƻƴ ōȅ άŘŜŦƛƴƛƴƎ ŀ ƳŜǘŀŘŀǘŀ ƛƴǘŜǊŎƘŀƴƎŜ ǎǘŀƴŘŀǊŘ
ŦƻǊ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀŎŎŜǎǎƛƴƎ ŀǇǇƭƛŎŀǘƛƻƴ ƛƴǘŜǊŦŀŎŜǎέΦ ¢Ƙƛǎ ǇǊƻŦƛƭŜ Ƴŀȅ ōŜ ǳǎŜŦǳƭ ƛƴ
the case of a component of the non-cloud compatible application that is migrated to
the cloud and this component has to communicate with the non-migrated
components.

ǒ ¦a[¢ŜǎǘƛƴƎ tǊƻŦƛƭŜ ό¦¢tύΥ ά¢ƘŜ ¦a[¢ŜǎǘƛƴƎ tǊƻŦƛƭŜ ƛǎ ŀ ǎǘŀƴŘŀǊŘƛȊŜŘ ƭŀƴƎǳŀƎŜ ōŀǎŜŘ
ƻƴ haDΩǎ ¦ƴƛŦƛŜŘ aƻŘŜƭƛƴƎ [ŀƴƎǳŀƎŜ ό¦a[ύ Ŧor designing, visualizing, specifying,
analyzing, constructing, and documenting the artifacts commonly used in and required
for various testing approaches, in particular model-baseŘ ǘŜǎǘƛƴƎ όa.¢ύ ŀǇǇǊƻŀŎƘŜǎΦέ
[9]. This profile might be included in ARTIST for the purpose of assisting the user to
visualize the testing for migrated components.

ǒ UML profile for BPMN processes: This specification enables modelers to use BPMN 2
process and collaboration notation as a concrete syntax for UML activity and
collaboration models. It extends the UML meta-model with a UML profile, including
extensions of UML semantics to ensure equivalence to BPMN semantics. Equivalent
semantics ensures that businesses following BPMN process or collaboration diagrams
will function the same way whether the diagrams are captured using the BPMN meta-
model or the profiled UML meta-model [10].

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 23 of 57

SOAML

The Service oriented architecture Modeling Language (SoaML) [11] specification provides a
meta-model and a UML profile for the specification and design of services within a service-
oriented architecture. The profile defines several stereotypes for common SOA elements such
as consumer, provider, service interface, request, service, etc. See Fig 1 and Fig 2. Details
about the main stereotypes are listed below:

ǒ Service: A Service represents a feature of a Participant that is the offer of a service by
one participant to others using well defined

ǒ Terms, conditions and interfaces.
ǒ Request: A Request represents a feature of a Participant that is the consumption of a

service by one participant provided by others using well-defined terms, conditions and
interfaces.

ǒ Participant: It is either a specific entity or a kind of entities that provide or use services.
Participants can represent people, organizations, or information system components.

ǒ Consumer/Provider: A consumer of a service specifies the service interface they
require using a request port. The provider and consumer interfaces must be either the
same or compatible. If they are compatible, the provider can provide the service to
that consumer.

{ƻŀa[¦a[ǇǊƻŦƛƭŜ Ƴŀȅ ōŜ ǾŜǊȅ ǳǎŜŦǳƭ ƛƴ ǘƘŜ ŎƻƴǘŜȄǘ ƻŦ !w¢L{¢Ωǎ ƳƻŘŜƭ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ǘƻƻƭ ǘƻ
describe the non-cloud compatible applications which have service-oriented architectures.

Figure 1 Stereotype definitions for SOA Profile - Part I (taken from [11])

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 24 of 57

Figure 2 Stereotype definitions for SOA Profile Part II (taken from [11])

SysML

This specification defines a general-purpose modeling language for systems engineering
applications, called the OMG Systems Modeling Language [12]. SysML supports the
specification, analysis, design, verification, and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and
facilities. SysML reuses a subset of UML 2 and provides additional extensions to satisfy the
requirements of the language. SysML is designed to provide simple but powerful constructs for
modeling a wide range of systems engineering problems. It is particularly effective in
specifying requirements, structure, behaviour, allocations, and constraints on system
properties to support engineering analysis. The language is intended to support multiple
processes and methods such as structured, object-oriented, and others [3].

SysML reuses a subset of UML 2 and provides additional extensions needed to address
requirements in the UML for Systems Engineering RFP. The SysML package structure shown in
Figure 3 contains a set of packages that correspond to concept areas in SysML that have been
extended.

The SysML packages extend UML as follows:

ǒ SysML::ModelElements refactors and extends the UML kernel portion of UML classes.
ǒ SysML::Blocks reuses structured classes from composite structures.
ǒ SysML::ConstraintBlocks extends Blocks to support parametric modeling.
ǒ SysML::Ports&Flows extends UML ports, UML information flows, and SysML Blocks.
ǒ SysML::Activities extends UML activities.
ǒ SysML::Allocations extends UML dependencies.
ǒ SysML::Requirements extends UML classes and dependencies.
ǒ SysML::DeprecatedElements extends UML ports, UML interfaces, and SysML Item

Flows.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 25 of 57

Figure 3 SysML Package Structure (taken from [12])

Figure 4 An example usage of rationale relationship (taken from [12]

In case of ARTIST, certain concepts from SysML may be adapted to create new UML profiles or
enhance the existing ones in order to describe the non-cloud applications better in the process
of model understanding, thus offering more informative models for pre-migration tools. For

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 26 of 57

example, a Rationale relationship may be added to a component extracted by MUT to show
that it should satisfy a certain requirement in the migration goals. This way, pre-migration
tools which analyze the non-cloud system would have a better understanding of the model
and provide more accurate suggestions.

MARTE

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [13] defines a UML
profile which adds capabilities to UML for model-driven development of Real Time and
Embedded Systems. This extension provides support for specification, design, and
verification/validation stages.

UML profile for web modeling (EA supported UML profiles)

Enterprise Architect defines the UML Profile for Web Modeling [14] ŜȄǘŜƴŘƛƴƎ ǘƘŜ haDΩǎ
Unified Modeling language in the purpose of offering a solution for building UML models in the
context of Web Application Development/Modeling. The profile defines several stereotypes
that define Web elements such as:

¶ JSP pages or ASP pages: to specify different types of web pages

¶ Forms, input elements, select elements: to specify various web elements,

¶ Links, submits, redirect: to specify relationships as UML associations.

Although not being able to cover a broad range of web elements, this profile might form a
basis for defining a UML profile to be used in the ARTIST context to model the web-based use
cases and would be a valuable asset in the ARTIST repository.

UML/EJB Mapping Specification:

This specification [15] defines a set of UML extensions as a UML profile that capture the
structure and semantics of EJB-based artifacts. The UML profile supports the capture of
semantics expressible with EJB and the subset of the Java language used in the construction of
EJBs, including the relationships between logical and physical Java constructs and UML model
elements, and the forward and reverse engineering transformations between UML model
elements and Java artifacts (Figure 5). This profile might be used to further improve the J2EE
ǇǊƻŦƛƭŜǎ ŘŜŦƛƴŜŘ ƛƴ ǘƘŜ ŎƻƴǘŜȄǘ ƻŦ !w¢L{¢Ωǎ a¦¢ ŎƻƳǇƻƴŜƴǘ ƛƴ order to derive more accurate
component models from the legacy J2EE applications with the transformations.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 27 of 57

Figure 5 UML Profile for UML/EJB Mapping Specification (taken from [15])

IFML: The Interaction Flow Modeling Language

IFML [16] is an OMG standard for expressing the content, user interaction and control
behaviour of the front-end of software applications. It provides a platform-independent
description of UI focusing on the user interactions, but it does not describe graphical elements.
Concretely, IFML addresses the specification of the following UI aspects:

 Content
 Navigation path
 Events
 Binding to business logic

http://www.artist-project.eu/
http://www.ifml.org/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 28 of 57

 Binding to persistence layer

The IFML profile has been designed to be extendable from the ŎƻǊŜ ά9ǎǎŜƴǘƛŀƭǎέ profile,
depicted in Figure 6. For example, a Web extension could be defined to add additional Web UI
modeling concepts.

Figure 6 IFML Essentials (taken from [16])

Other aspects covered by IFML are:

 Modeling of multiple UI views
 Modeling of mobile and multi-device applications
 Modeling of components independently of visual representations (i.e. widgets)
 Modeling of interaction flow, initiated by the user or external events.
 Modeling of user content during the interaction flow.
 Modeling of visualization, input and event data.
 Modeling of user input validation and constraints.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 29 of 57

5 ARTIST common general-purpose artefacts

Next subsections describe the different general-purpose MDE artefacts that have been created
in response to the needs of the different ARTIST use cases to apply ARTIST migration
techniques in their concrete domains. Next subsections group described MDE artefacts by
type.

5.1 UML profiles

Annotation.profile.uml

This profile (c.f. Figure 7) defines the Annotated stereotype extending Class, Property and
Operation for the purpose of storing Java annotations as a list of String on UML elements.

Figure 7 Diagram of Annotation UML Profile

By default, the Unified Modeling Language (UML) does not contain a definition for
annotations, which can be found in most the programming languages. The Annotation profile
offers a simple yet powerful way to emulate annotation definitions on UML entities by just
introducing a single stereotype to compensate this absence and providing a stereotype which
holds a list of String elements called annotations and applicable to Class, Property and
Operation entities. This profile does not contain any information on the applied annotation
other than its name. Thus, it would be safe to say that the profile is most suitable for purposes
where additional information on annotations, apart from their names, is neither needed nor
crucial.

j2ee5.profile.uml

Four separate groups can be identified in the J2EE 5 profile.

 Persistence
 Web Tier (Servlet / JSP)
 Enterprise Bean
 Web Services

With the Persistence group it should be possible to profile relational data in Java applications.
Stereotypes like EntityManager, PersistentObject, Entity, Relation or Query are included in the
UML definition. Figure 8 represents a reduced version of this UML profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 30 of 57

Figure 8 Reduced version of persistence diagram

The Web Tier UML group is used to profile servlet and JSP pages. Figure 9 represents a reduced
version from the web tier diagram.

Figure 9 Reduced version of the Web Tier diagram

The Servlet is the main stereotype of the web tier uml diagram. GenericServlet inherits from
this stereotype. A GenericServlet is a protocol-independent servlet. HttpServlet is a web servlet
that implements the methods of doGet, doPost, doPut, doDelete and is HTTP protocol
oriented.

In the EnterpriseBean group we have the server-side component with the same name that
encapsulates the business logic of an application. Two types of enterprise bean exist in J2EE 5:

 SessionBean: It performs a task for a client; optionally it may implement a web service
 MessageDrivenBean: It acts as a listener for a particular messaging type, such as the

Java EE applications to process messages asynchronously.

Figure 10 is a reduced version of the EnterpriseBean UML diagram.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 31 of 57

Figure 10 Reduced version of the Web Tier diagram

In the WebService group we represent a stereotype with the same name.

Figure 11 Reduced version of the WebService diagram

WebServices allow servers and clients that communicate using XML. A WebService has a
collection of WebMethods than can be called from a client. Each WebMethod can have several
WebParam, but just one WebResult.

rcp.profile.uml

This profile extends UML by defining stereotypes for Eclipse RCP elements and it is used in the
high-level abstraction of class and component models representing RCP-based desktop
applications, in the context of the Model Understanding Toolbox (MUT). This profile is generic
enough as to represent most of the typical standalone desktop RCP-based applications such as
those implemented with SWT/JFace graphical framework.

The profile defines stereotypes for representing top RCP elements accepting third-party plugin
contributions to its UI, such as: Workbench, Perspective, View, Menu and ToolBar; as well as
for RCP Action elements: Toolbar Action, Menu Action, View Action and Object Action6.

6
 An Object Action is a particular type of action associated to concrete selected elements within a view

widget (i.e. a Tree or Grid selection)

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 32 of 57

The Eclipse Workbenches can be organized in sets of Perspectives, supporting the sharing of
views between Perspectives. These stereotypes enable the characterization of the RCP visual
organization. Additional visual elements attached to views are ViewPopupMenus and
ObjectPopupMenus (which become available on the selection of a particular BusinessObject).
The workbench can also define toolbar and menu actions.

Other visual control objects, apart from PopupMenu, included in the profile are Workbench
Menu and Toolbar, which can be associated to any view or workbench (i.e. top menu and top
tool bar).

Since the RCP elements can be characterized by classes, interfaces or components, this profile
stereotypes are defined as extensions of UML::Classifier.

This profile has been designed focusing on some of the commonest RCP extension elements
defined in the RCP plugin.xml descriptor file (the GUI extension mechanism is an advanced
feature of the RCP framework [17]).

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 33 of 57

Figure 12 Diagram of RCP UML Profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 34 of 57

gui.profile.uml

The applicability of the RCP profile to slice and qualify model elements is restricted to RCP-
based applications, suitable for obtaining sliced PSMs. Further abstraction to PIMs requires
platform independent (PI) meta-models or profiles. Therefore, a PI GUI UML profile is required
to support model abstraction of GUI based applications (both desktop and webtop). This
profile can complement the utility of IFML profile (see Section 4.3) by enabling the modeling of
graphical elements, while IFML can be used to model the user interaction.

The GUI UML profile shown in Figure 13 and Figure 14 has been designed incorporating
common GUI elements included in popular Java frameworks for building GUI applications,
notably SWT/JFace [18] and GWT [19] (but common in AWT/Swing [20] and other frameworks
as well). This profile focuses on the characterization of the main graphical modeling elements,
aiming at enabling their labeling in PIMs such as class and component models.

This profile describes UIApplications and their UILayouts7. A UIApplication can have one main
Menu and Toolbar.

Graphical elements are classified into Widgets, ActionableObjects, UIActions and Menus.
Widgets elements are classified into those which are accionable and those which are not. An
AccionableWidget triggers an action when selected. Examples of non-actionable widgets are
Labels, Images, ProgressBars or TrayNotifiers. Examples of ActionableWidgets are editable or
selectable elements, such as Buttons, ListBoxes, ComboBoxes, Trees, MenuItems or UIPanels.
UIPanels are widgets that contain others that are organized according to a specific layout, such
as Dialogs, TabPanels, PopupPanels, Canvas, FlowPanels, SplitPanels, etc.

ActionableObjects are data objects that trigger specific actions on the GUI, such as the
adaptation of a contextual menu upon the selection of the graphical element representing the
object.

UIActions are processes executed upon the selection or modification of the widget content by
the user. We distinguish between actions associated to tool bars (ToolBarAction), menus
(MenuAction), objects (ObjectAction) and panels (Panel Action).

Since the GUI elements can be characterized by both classes and interfaces, this profile
stereotypes are defined as extensions of UML::Classifier, excepting for ActionableObjects that
represent UML::Types.

dataManagement.profile.uml

This profile extends UML by defining stereotypes for Observer Pattern and is used in the
extraction of high-level PIMs for data management in the context of Model Understanding
Toolbox (MUT), see Figure 15. The profile defines stereotypes for Observer Pattern objects,
subject, observer and message listener and also operations related with this pattern such as
update, notify observers, register observers and remove observers allowing any application
that incorporates the observer pattern to be modelled in UML.

7
 A Layout describes the current widget distribution within the UI Application, similar to RCP workbench

perspective or Web page layout.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 35 of 57

Figure 13 Diagram of GUI UML Profile (View I)

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 36 of 57

Figure 14 Diagram of GUI UML Profile (View II)

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 37 of 57

Figure 15 Diagram of dataManagement profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 38 of 57

net.profile.uml

This profile extends UML by introducing eight stereotypes for .NET (Figure 16). The WebService
stereotype is generalized by WCFService and ASPNETService to represent the different kinds of
web services in the context of .NET. DataStore stereotype defines the components that
manage the connection between the data store and the application and Entity stereotype
defines the model classes. The View stereotype defines user ASP.NET pages which are actually
user interfaces. Logging stereotypes defines the components which are responsible for logging
and finally BLOB stereotype defines the components that constitute BLOBs in the application.

Figure 16 Diagram of .NET profile

MicrosoftSharePoint.profile.uml

This profile extends UML by introducing seven stereotypes to define Microsoft SharePoint
applications. Application is generalized by Service Application and Web Application (see Figure
17). A Service Application is a granular component running within SharePoint providing a
particular service towards other SharePoint components. A Web Application is a basic web-
based application that is a kind of plugin on top of Microsoft SharePoint. The List stereotype
defines one of the two types of storage mechanisms in Microsoft SharePoint and ListStore
stereotype defines the overall collection of Lists in a component model. Workflow stereotype
defines the modules running a .NET workflow inside Microsoft Sharepoint. Lastly
SharePointObjectModel defines the structured object model enabling easy access to the
objects inside Microsoft SharePoint.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 39 of 57

Figure 17 Diagram of Microsoft Sharepoint profile

visio.profile.uml

This profile introduces four stereotypes targeted for Microsoft Visio. VisioObjectModel
stereotype defines a structured object model enabling easy access to the objects inside
Microsoft Visio (see Figure 18). Extension stereotype is generalized into AddIn and COMAddIn.
Both stereotypes are different techniques of creating an extension to Microsoft Visio. AddIn is
the new way of creating a .NET assembly while COMAddIn is the older way of creating a
windows COM component.

Figure 18 Diagram of Microsoft Visio profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 40 of 57

security.profile.uml

This profile extends UML by defining stereotypes for the authentication security requirement
of applications. In particular, Figure 19 depicts the Java Authentication and Authorization
Service (JAAS) [21] UML profile whose stereotypes can be applied to the eGov use case to
identify the components that handle the JAAS authentication.

The Subject, Principal, Credential, LoginContext, LoginModuleOption and CallbackHandler
stereotypes extend UML::Class, while the LoginModule and the Callback stereoptypes extend
the UML::Interface.

The Subject stereotype represents the source of a request (e.g. a person or a service) that must
be authenticated. The Principal stereotype represents an authenticated Subject (one or more
Principals can be associated to the Subject if the authentication is successful). The Credential
stereotype represents public or private security attributes of a Subject (e.g.
username/password, certificates, etc.). The LoginContext stereotype provides the basic
operations for authenticating subjects loading the LoginModule(s) specified in the
Configuration. The Configuration stereotype extends the UML::Artifact and specifies the
LoginModuleOption(s) that should be used for a particular application. In particular, the
LoginModuleOption stereotype defines the LoginModule(s) intended to be used and the flag
values (Required, Requisite, Sufficient, Optional) that control authentication behaviour. The
CallbackHandler stereotype represents the way applications interact with users to obtain
authentication information. A LoginModule uses the CallbackHandler to gather input from
users (such as a password or smart card pin number) or to supply information to users (such as
status information).

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 41 of 57

Figure 19 Diagram of JAAS profile

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 42 of 57

packagemanagement.profile.uml

This profile specifically targets application migrations in the .NET domain. Any migration
requires the knowledge of which external packages/components the project depends on. In
.NET there is a distinction between packages/components managed via NuGet and assemblies
included into the project in the old-fashioned way. The profile extends UML by defining a
stereotype together with a datatype. It allows declaring a NuGetPackages profile to any UML
Package or Component. This item contains one or more NuGetPackage elements referencing
the external components. A NuGetPackage Ŏƻƴǘŀƛƴǎ ǎƻƳŜ ōŀǎƛŎ ƛƴŦƻǊƳŀǘƛƻƴ ƻŦ ǿƘƛŎƘ ŀƴ άƛŘέ
ŀƴŘ ǘƘŜ άǾŜǊǎƛƻƴέ ŀǊŜ ǘƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ƻƴŜǎ (See Figure 20).

Figure 20 Package management profile

Having this distinction allows to later on, when generating the target deployment units, easily
determine whether the packages are available on the cloud platform, check whether there are
updates to these packages, replace the current packages with similar cloud-compliant
packages and so on.

5.2 Meta-model s

TransformationParameters.ecore

The TransformationParameters (Figure 21) is a simple meta-model consisting of an EClass
named Parameter which has three EString attributes: name, value and type. The motivation
behind the creation of this meta-model was the lack of parameterization in ATL
transformations. By default, ATL transformations only accept models as inputs to the
transformation, which forces the user to change the transformation code to derive different
outputs for the same input models.

This meta-model enables the user to insert key-value like information into the transformation
which can be used to make decisions on runtime. This avoids having to change the code to
derive different results.

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 43 of 57

Figure 21 TransformationParameters Meta-model

An example usage might be to create a model conforming to this meta-model as seen in Figure
22, and then use this model as an input for a transformation which simply filters out elements
by their features. This hypothetical transformation contains code that filters out elements
from the output model if any class in the input model is implementing and/or extending a class
stated in the value part of the parameter model. For a case like this, the user can change the
output model to his/her purposes by just changing the parameter information using this
approach with the aid of this meta-model.

Figure 22 An example model conforming to TransformationParameters

RSDL.xsd

As the CloudML@ARTIST language has been extended to support SaaS services or 3rd party
services, there was a need to be able to describe these services. This is not an inherent part of
the extension itself. A reference to a description is used, instead.

As the preferred way nowadays is to use REST based services (as opposed to SOAP services8),
these services could be described using the language called RSDL (RESTful Service Description
Language9). As no actual usable schemas of this language have been found online but merely
descriptions thereof, our own schema compliant with the RSDL description has been created
within the context of the ARTIST project. It consists of the main concepts found within RESTful
services such as request, response and parameters inside the body or through the query string
and so on (See Figure 23).

8
 http://schemas.xmlsoap.org/wsdl/

9
 http://en.wikipedia.org/wiki/RSDL

http://www.artist-project.eu/

D10.5.1 ς Inventory of common general-purpose artefacts Version: v1.0 - Final, Date: 30/09/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 44 of 57

Figure 23 RSDL meta-model

Models conforming to this particular RSDL schema, describing a service, can be referenced
inside the SaaS models. The main usage for this description is to eventually generate source
code (or stub code at least) enabling the integration of these services in the migrated
application. It can also be used independently, for example to automatically generate
documentation of these services.

5.3 M2M transformations

UML Copy

UML Copy is an ATL module that produces an exact copy of the input UML model. It is very
useful combined with specific ATL modules (e.g. M2MTs) that introduce modifications in the
input UML model (to produce different output models), without requiring specifying ATL rules
for every UML element defined in the input meta-model. This approach reduces significantly
the complexity and efforts required to create new M2MTs and their length.

UML Copy is typically used in a M2MT composition by being superimposed by the main
transformation ATL module (in the composition). Superimposition [22] is supported in ATL by
different engines. In particular, it is being used by the EMFTVM engine [23].

UML Copy has been automatically generated for the UML 2 4.0.0 meta-model (EMF Ecore
instance) shipped within the Eclipse UML2 Plugin [24], using the Ecore EMF M2MT Copy
Generator10 provided by the Software & Language Lab of Vrije University [5].

10

EModelCopyGenerator ATL plugin is downloadable at:
http://soft. vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/transformations-
offline/EModelCopyGenerator.atl?view=log

http://www.artist-project.eu/

