D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

ARTIST
FP7 -317859

artist

Advanced softwarebased seRvice provisioning and
migraTlon of legacy Software

DeliverableD10.3.1
Repository Prototypevi18

Editor(s): Oliver Straufl3
Responsible Partner: FRAUNHOFER
StatusVersion: V1.0
Date: 13/05/2014
Distribution level (CO, PU) PU
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Pagel of 61

D10.3.1¢ Repository Prototype

Version: v1.0Date:13/05/2014

Project Number:

FP#317859

Project Title:

ARTIST

Title of Deliverable:

Repository Prototyp&118

DueDate of Delivery to the EC

31/03/2014

Work packageresponsible for
the Deliverable:

WP10

Editor(s): Oliver Straufl3

Conributor(s) Ollve_r St_raurS (Fraunhofer)Stefania D'Agostin
(Engineering)

Reviewer(s): Yosu Gorrofiogoitia, ATOS

Approved by:

All partner

Recommended/mandatory
readers:

WPR5,6,7,8,911,12

Abstract:

This deliverableis a working prototype tha;
compises the second iteration of the intern
repository including the first iteration of the publ
repository web interface as described in D10.2
well as developer documentation

Keyword List:

Repository prototypeartefact management

Licensing inform#on:

The authorization service is published under L(
v3 license. All other components are publish
under EPL v1

The document itself is delivered as a descript
for the European Commission about the releag
software, so it is not public.

ProjectTitle: ARTIST

Contract No. FR3178&9
www.artist-project.eu
Page? of 61

D10.3.1¢ Repository Prototype

Version: v1.0Date:13/05/2014

Documern Description

Document Revision History

ModificationsIntroduced

Version | Date
Modification Reason Modified by
V0.1 07/03/2014 | First version Fraunhofer
V0.2 14/03/2014 | Added description of the securit Engineering
' module component
V0.9 05/05/2014 | Version for internal review Fraunhofer
V1.0 13/05/2014 | Final version Fraunhofer

ProjectTitle: ARTIST

Page3of 61

Contract No. FR3178&9
www.artist-project.eu

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Table of Contents

Table Of CONTENTS.. ... e e e et e e e e e e e e e e e e e e e e s s eaesaaaeaaaaannnnnnnes 4
TADIEOT FIQUIES. ...ttt e e e e e e e e e e e e e 6
Table Of TADIES. ... e e e e e e e e e e e e e e e e e e e 7
Terms and abbreVIationS............uuuiiiii i ee e e e 8
EXECUIVE SUMIMIAIY. uuiuuiiuiitritiieireseeeseeeeeereereeeetteataaaaaaaaaaaaaaeaassassaaassaaaaassnsnssnsssnsssssnsnes 10
A 111 0T [Td 1 [o PP 12
1.1 Aboutthisdeliverable.............oooiiiiiii e 12
1.2 DOCUMENTE SITUCTUIE..ieieeiiiiieiieiiie e e e ettt e e e e e e e e e e ee bbb e e e e e eaeeeeenenns 12
2 IMPIEMENTALION.cciiiieiecee e e e e e e e e e e e 13
2.1 Functional deSCripliON.........ccoeii i e e e e e e e e e 13
211 ROBAMEP. ...t e e 14
2.1.2 1] a0) V7= o] o 1 SRR 14
2.1.3 Fitting into overall ARTIST SOIUtION.......covvviiiiiiiiiiiiiee e, 15
2.2 Technical deSCIPLION.uuuiiiiiiiiiiiiieeeeee e 17
221 Prototype arChiteCtUIe.............uviiiiee e 17
2.2.2 Data MOAEL ————- 18
2.2.3 Repository service and Client.............ccccoiiiiiii e 20
2.2.4 AULNOTIZAtION SEIVICE......eeiiiieiiiiiiiiie e e 21
2.2.4.1 Sewice interface (AP 22
2.2.4.2 Security Data MOdEL...........c.uuiiiiiiiiiiece e 22
2.2.4.3 Integration of the Authorization ServiCe..........cccvvvvieiiiiniiiiiiee e, 24
2.25 Technical SPeCIfiCatiONS............uuuiiiiiiiiiiiiiiiiieeieee e 24
3 DElVErY and USAQGE.......cooooiii i aaaaaaaaaaaaaas 26
3.1 Package iNfOrMEatiON.oouuiiiiiie it 26
3.1.1 REPOSITONY SEIVEL......iiiiiiieeee et 26
3.1.2 REPOSIHONY CHENT......eiiiiii it 26
3.1.3 AULNOIZAtION SEIVICE.......uuiiiiiiiiiieeiee et eee ettt e e e e e e 27
700 I S S 1o 1 o = o o o = RS 27
3.1.5 P BV BWS ... a e e e e e e e e e e e e ———— 28
G2 0153 7= 11 = U o] 1S3 {8 o 1o 28
3.21 T 0 L0 LS [0 V=TT oYY R 28
3.2.2 RePOSItOrY CHENT......oeiiee e 29
3.2.3 AULNONZAtION SEIVICE......uuuiiiiiiiiiiiieeiieieee et e e e e ea e e e e e e e e e ae e 29
G0 T U= g 1V =V U - Y 29
3.3.1 REPOSILONY APl 29
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Paged of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

3.3.2 AUthOrization ServiCe APL........coo o 31
3.3.3 User and security management...........cccoeuiiirrrrreeeeiaiiireieeee s siineeeeeeesans 33
3.3.3.1 USEer Managemenyt........cooiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e 33
3.3.3.2 SEeCUrity ManagemeNL.........cuiiiiiiiiiiei e 35
3.3.4 Repository Eclipse ClEnt.............ooooiiiiiiiiiceiicrrr e 37
3.3.5 Marketplace MOCKUPcoiiiiiiiiiii e 38
3.4 Licensing iNfOrMALION..........uuriiiieiiiiiii e e e 39
T T B 1o 1Y/ o1 (o = o RPN 39
N 0] T [] o] o TP PP PRPR PP 40
L] (=] (=] o =T U 41
5 APPENDIX A: ProjeCt ARL....cueiiiiiiii ettt 42
5.1 Creall PrOJECES . ciieiiiiiitieeiee e e ettt e e e e et r e e e e e st e e e e e e e e snbn e e e e e e s ennbnnneeeeeean 42
5.1.1 Service layer ARL.......coo oot na e D2
B5.1.2 REST AP ittt 42
S A C 1= i o] (0] [=Tox £ P P PP PPPP P PPPPPR 43
5.2.1 Service layer ARL.......ooooiiiiiiiiiiieeeeee e A3
B5.2.2 REST APttt 43
TG I U o o b= (= o] (0] [=Tox (= P PPPPSPPPPPRRY 44
5.3.1 Service layer ARL........oooo oo A
5.3.2 REST AR ..o e aaa 44
5.4 DelEtl PrOJECES. . .cciiiiiiiiieiiee ettt e e 45
5,41 Service layer ARL.......cooo oot eee e e nna e e e D
5.4.2 REST APttt as 45
5.5 LiST PrOJECES. .ttt 46
55.1 Service layer ARL......coooiiiiiiiiiiiieee e 4O
55.2 REST AR ..o e aaa 46
6 APPENDIX B: Artefact ARL.......oooiiiiiiiieee et 48
6.1 Create artefaClS. e e e aaa e 48
6.1.1 Service layer ARL.......oooouiiiiiiiiiiie e A8
6.1.2 REST AR ..o e eaa 48
6.2 REetNeVve artefactS. 49
6.2.1 Service layer APL.......cooo i a e e e e e A
6.2.2 REST AR ..o e eaa 50
6.3 UPdAe ArtefACS.ceieiiiiiiiiii e 50
6.3.1 ServiCe layer ARL......coo i 50
B.3.2 REST AP ..t aas 51
6.4 Delete artefactScoiiiiiiieieeee e e aeaaaaaeas 51
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Page5 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

B6.4.1 ServiCe layer APl ... 51
B.4.2 REST AP .ottt as 52

6.5 FINA ArtefactS.....coviiiiiiiiiiii s 52
B6.5.1 Service layer AR ... 52
B.5.2 REST APl ..ottt 53

7 APPENDIX C: Category ARL..... ettt a e e e e snnranee e e e e annnes 54
7.1 Create CAEQOEBIS.uueeiiiieeiiiiiee e e e e e ettt e e e s s e et e e e s s s s e e e e e e s aanbrreeeeeeeaane 54
711 Service layer AR ... 54

T. 0.2 REST APl .ttt et e e et 54

7.2 REtrEVECAIEGONES......ciiiieieiie ettt e e e e s s e e e eeas 55
7.2.1 ServiCe layer AR ... 55
A = 4 =3 I Y = SR 55

7.3 Update CalEQOIES.....ccciiii eaaeeas 56
7.3.1 Service layer AR 56
AR = 4 =3 Y = S 57

7.4 Delete CAtEUOIESuiiiiiiiee ittt e e e s e e e e e e e e e e e aaes 57
T.4.1 Service layer AR ... 57
T4.2 REST APRL. ..ottt ee et e e e nntae e e bae e e e ennees 58

8 Appendix D: ARTIST Marketplace MapK...........ccccouiriiiiiiiiiieiiiiiiieeeeeeeeeee e, 59

Table of Figures

HGUREL: CONCEPTS REALIZEDHN PROTOTYPE ABSET ORGUREBBIND10.2[1]....ccevvveeeeeeee. 13
HGURR2: THEWP10COMPONENTREPOSITORMARKETPLACE ARBPOSITORRLUGIN(YELLOWIN THE
CONTEXT OF TR T IS BUITE ... ittt e et e e et e e et e e e e e e e b e enss 16
HGURB: HIGH LEVEL ARCHITEETARD COMPONENTSTBEARTISTREPOSITORY PROTOTYPE.....18
HGURE: MODEL OF THE CORETHEFORY DATA STRURETU ...vuviiveniieriiieieeeeiee e ee s s s eneesenn s 19
HGURB: ARCHITECTURE AND SESOF THERTISTREPOSITORY SERVERARITLIENT.......vvvvven.. 20
HGURES: AUTHORIZATICRERVICE ARCHITECTURE .. .cuutiiitiieietieieeeeeeseeetaseestneessnsessnsessneens 21
HGURE : AUTHORISATICERVICE INTERACTIONS ...cvutiieteieietieeeaseernesssnseresnssrsnnssssassesnssrenns 22
FGURE: SECURITIIATAMODEL. . .cuuuiittiietieieieeieasesaaeesaaasseaasesssa s ssasssbasseba s renasersanseraanss 23
HGURE: GODE SNIPPET TO INLTE THEREPOSITORY CLIENT c.uutiivtiieeteieenneeereeeeneeesneeennesenns 29
HGURELO: CODE SNIPPET TO CREANID RETRIEMEOJIECTS. ..cuutiivenieereeieieeesiee s eesraesssnnsessnnnas 30
HGUREL1: CODE SNIPPET TO CREAND RERIEVE CATEGORIES......iiiviiieieeieiee et e e e s e 30
HGUREL2: CODE SNIPPET TO CREANY ARTEFACT RECARDATTACH CONTERTMT...uvvvvvneeevneennn. 30
HGUREL3: CODE SNIPPED RETRIEVE AND QUEBRTEFACTS. ..cvutiietiietteierieierneeesnseesnssennsseenns 31
HGUREL4: USAGE EXAMPLE OF AHEHORIZATIOBERVICE. .. .cuuiieiiieiiieeeieeee e et e eaee e eneeennns 32
HGURELS: CREATING ARCCESBEQUEBT. .. ivttiiiitiieiiieeete e st e et e e st e et e s et sssb s s s s e e e e e ebaans 32
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Page6 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

HGURE16: EXEMPLARY CREATION T®fE SUBJECATTRIBUTESOBJECTRESOUR@HTRIBUTESAND

ACTIOMATTRIBUTERRE CREATED ANALOBIQOU.u.cieiviieeeieriieeeeeeetieeeseetieeessernaeeeseennnns 33
FHGURAL7:WSO2ADENTITEERVEMANAGEMENGONSOLE.uuiiiiiiviiieeeeeeteeeeeeeteeeeeerieeeeeanaas 33
FGURHELB:WSOIDENTITEERVERISER MANAGEMERBIUL........ccvviieiiiiieieeeeeie e 34
FGURHL9: WSOZDENTITERVEROLEMANAGEMENGUL.......oeiiiiiieeiiee e, 34
FGURRO: WSOIADENTITEERVERISERMANAGEMENGUL........oiiiiiiiiiiiii e, 35
FGURR1:WSOIADENTITEERVERISERMANAGEMENGUIC ASSIGNROLE........oeeevvvieeeeeeiieeeeens 35
FGURR2:WSOIADENTITEERVEROLICYADMINISTRATIOBDNSOLE ...ccvvnieeieivieeeeeevieeeeeevieeeeees 36
FGURR3: WSOZDENTITYHB=RVEROLICYADMINISTRATIONNEWRPOLICY.......c0vieeeiiiieeeeeeiieeeeees 36
HGURR4: WSOZDENTITEERVEROLICYADMINISTRATIONENABLE POLICY......cciivvvieeeeeviieeeeens 37
HGURR25: CREATION OF A NERPOSITORY CONNECTIQON.ccvuuieeiitiieeeererriieeeeeerinseeeeerinaaeaens 37
HGURR6: MANAGEMENT GREPOSITORY CONNECKION.....ccuuuiieiiitiiieeeeerieeeeeerieeeeeestieeeseannns 38
HGURR7: REPOSITORORTENT IN THEEPOSITOHBROWSER......cctuiieeiiiiiieeeeeitiee e et eeaannes 38
FRGURR8: MAIN PAGE OF TARTISTMARKETPLACE WITH RHTEEVELOPMENIS........ccvvvvvennnnnn.. R9
FGURR9: EARCH PAGE OF TARTISTMARKETPLACEcttttieiieeeeeeeeeeerttiiiiieeseeeeeseeeesssrnnnnnnns 60
FGURBO0: USERS CAN MANAGE RHEIBLISHED ARTEBANTTHARKETPLACEvvuieeieeeeeeeeeennnd 60
FRGURB1: THEMARKETPLACE TRACKHSARTEFACTS USED RIMRCHASED......uvvueeieeeeereeeeevvinnnnnns 61

Table of Tables

THIS DOCUMENT CONTANIO TABLES

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page7 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Terms and abbreviations

ABAC Attribute Based Access Control
API Application Programming Interface
AS Authorization Service
CDI Contexts and Dependency Injection
EC European Commission

EMF Eclipse Modelling Framework

GUI Graphical User Interface

HTML HypertextMark-up Language

IDE Integrated Development Environment

JAR Java ARchive

JCR Java Content@pository

JEE Java Enterprise Edition

JSON JavaScript Object Notation
MDA Model Driven Architecture
MDE Model Driven Engineering
PDP Policy Decision Point
PEP Policy Enforcement Point
RCM Repository Content Model
REST Representational State Transfe
SDK Software Development Kit
UML Unified Modelling Language
URI Unified Resource Identifier
URL Unified Resource Locator
UuID Universally Unique Identifier

ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
PageB of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

XACML eXtensible Access Contidark-up Language
XML eXtensibleMark-up Language
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Paged of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Executive Summary

This deliverable describabe prototype of the ARTIST Repositdihat is bundled with this
document andthat provides an infrastructure to manage the potentially reusable artefacts
produced during ay migration project accomplished using tHeRTSTtools. The goal is to
foster reuse of artefactinside andbetween different migration projectsTwo tasks dealing

with identifying and managing reusable artefacts have been contributed to the ARTIST
Methodology. The ARTIST Repository is the primarysiopporting these tasks.

Since ARTIST follows an MDE approach, the artefacts most likely managed by the repository

are metamodels, UML profiles, as well as motieimodel and modeto-text transformations.

The focus of the ARTIST repository is to makesé more abstract and stable artefacts

I dFAfFofS @AF oONRBgaAyadr a&aSINOKI | Lzt AO YI NJ
Eclipse workspacd he repository is less suited to manage model instances or artefacts that

change frequently.

The current vesion of the prototype supports the publishing and retrieval of artefatite
categorization and tagging of artefa@ad basic searching capabiliti¢sor artefact storagea
database based on the Java Content Repository @@Rjard is used.The funtionality is
provided to the user in form of REST based web servaed as a Javbhased client API that
makes integration of the repository services with other ARTIST tools &hasyprototype
contains an Authorization Service that will provide AttribBi@sed Access Control and that will
be fully integrated in the nexteleaseof the repository. Also included in the deliverable are
previews of the Eclipse client plugin and of the GUI of the ARTIST Marketplace.

The functionality of the ARTIST Repositsrgrganized in a layered architecture. On the server

a service layer that contains the actual functionality is built on top of the data layer. The REST
based web service layer makes the functionality of the service layer accessible in a standards
based way The Repository API client uses the REST interface to communicate with the server
and offers the same API to client applications that is provided by the service layer on the
server. The Eclipse Client Plugin will use the Repository API client to intdggatepository

into the Eclipse environment. This approach has the advantage that client applications using
the service API can be used on the server and on the client with only minor changes.
Furthermore multiple integration points are offered to otheRAIST tools: the RERAsed web
service API provided by the server, the service API provided by the API client and the
workspace integratiohat will be providedoy the Eclipse Client Plugin.

This deliverable documents starts with an introduction thatypdes a short motivation for the
ARTIST Repository and gives on overview over the deliverable content. Architecture and
implementation aspects of the delivered prototype are described in Se@joimcluding
descriptions of thefunctional andtechnicalcontent and a roadmap of upcoming releases.
Additionally, the integration of the prototype in the overall ARTIST approach and the
innovative aspects of the prototype are highlighted. In Sectprihe delivered software
package is described starting with the contents of the software package followed by the
installation instructions and a user guide. A conclusion in Sedtidoses the document and
provides an outlook on theext steps. The Appendices A to C describe the Java and REST API
provided by the ARTIST Repository in greater detail and Appendix D provides an early preview
on the ARTIST Marketplace Gitutorm of a static GUI moekp.

! https://jcp.org/aboutJava/communityprocess/final/jsr283/index.html
ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
PagelOof 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

The next release of the ARTISPpétory will be an internal release in M24 that will provide
security (authentication and authorization), linear versioning of artefacts, handling of inter
artefact dependencies and relationships with the help of a Repository Content Model (RCM),
and impoved search capabilities based on the RCM information. Also the first versions of the
Eclipse Client Plugin and the ARTIST Marketplace will be delivered. The next officiawilease
be in M30 and will additionally include change notifications, collectad user feedback,
artefact reuse trackingas well assupport for commercial artefacts and updated versions of
the Eclipse plugin and the ARTIST Marketplace.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagellof 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

1 Introduction

During an ARTIST migration project, a considerable numbartefactsare beingproduced
and consumed. Some of those artefaclike descriptions of abstract concepts or generic
transformations are potentially reusable among different migration projec&nce ARTIST
pursues a model driven approathe most likely candidates for ree aremetamodels and
the transformations that operate on those models

As stated in D10.71], the purpose of the ARTIST artefact repositorytoismanage the
potentially reusableartefacts that are being produced and processed by the ARTIST tools
during a modernization projectTo this end,it provides the foundations for a reuse
infrastructure based on the following features

1 Immutable artefact versions: Released artefacts are immetal@hanges in the
artefact content lead to a new version of the artefadthe old versions remain
unchanged and are still accessible.

Search by classification, full text or content metaa allows to find suitable artefacts
Browser based marketplace: Bsable artefacts can be published to the web based
Marketplace to promote their availability for future reuse.

= =

The prototype described in this document implements a server component that provides
services to manage artefacts and their mefaa. It is comfemented with a Java based API
client that makes integration of the repository services in other ARTIST toolsfeasyerview
overthe features provided in upcoming releases is provided in the roadmap in S2ctidn

1.1 About this deliverable

This document is the complement to tHERTIS Repository software prototype deliveredin
M18.

1.2 Document structure

This deliverable is structured as follows: After the introduction in this section, the
implementation aspects of the delivadeprototype are described in Sectidh first from a

functional point of view and then from the technical point of view. Additionally the integration

of the prototype in the overall ARTIST approach and the innovative aspeitts pfototype

are highlighted. In Sectiof the delivered software package is described starting with the
contents of the software package followed by the installation instructions and a user guide. A
conclusion in Sectiod closes the document and provides an outlook on the next steps. The
Appendices A to C describe the Java and REST API provided by the ARTIST Repository in greater
detail and Appendix D provides an early preview on the ARTIST tladesGUI.

% This feature will be provided together with artefact versioning in the next release due in M24. In the
current prototype artefacts are still otable.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel2of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

2 Implementation

2.1 Functional description

This document describes the first prototype of the ARepository server component that
provides the repository web service. This firsbfotype comprises the basic functionality of
the repository:the storage and retrieval of artefacts.

The following functionality is providgdeeFigurel):

)l

Create, view, update and delete projects. Projects are used to organize artefacts
according to differentmigration projects such athe use cases in ARTIST. Than
important element for access control as for example use cases can have their own
projects with use case specific access polidesublic project will contain the publicly
available artefacts that are to be promoted byet ARTIST Marketpladaside projects
artefacts are organized in packages.

Create, view, update and delete artefaateta-data (artefact record) and artefact
content An artefact record contains the namabel,description tagsand other meta-

data of theartefact. The artefact content represents the actual artefact to be stored in
the repository. Two types of contelitepresented by the interfacRepoContent) are
supported in the prototype: file content that is stored directly in the repository and
web catent that merely stores an URI pointing to the actual content that is located on
an external web server.

Create, retrieve, update and deleteategories Categories are used to logically
organize artefacts. Categories can have-sategories and thus forna hierarchical

tree structure.

Search and retrieve artefacts by project, package, id, tag or category.

Public project/ Private project/
Marketplace e.g. ARTIST Use Cases

Content

RepoContent RepoContent

Locator

| ~
~

| ~

|

~

~1 External Website
: FileContent WebContent ~<

O e

Artefact content

Storage

Artefact content

Figurel: Concepts realized in thigototype as subset of Figure 3 in D1(12.

ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Pagel3of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

This functionality is available in three forms: as service side service API, as REST based web
service API and as Java Client API that eases integration of the repository services with other
ARTIST tools or other third party aiggltions.

The current release focusses on the functional aspects of the ARTIST Repository. Some cross
cutting aspects such as security / access control could not be integrated into this release.
Although accesgontrol is not yet activated thénitial preparations (see the Authorization

service described in SectioB.2.4 have been completedand will be activated once
authentication is implemente@see next section)

2.1.1 Roadmap

The next releases of the ARTIST Repository andrtpamments are in M24 (internal release)
and in M30 (deliverable D10.3.2). The following roadmap indicates which features will be
included in these upcoming releases.

Internal release in M24:

1 Security Authentication (using OAUTH) and full integration of theuthorization
Service.

1 Repository Content ModeThe RCMstores the relationships between artefacfas
described inD10.2 [1]). The RCM will be populated with user supplied data
complenented withdataextracted from the artefacts

1 Versioning Implementation of linear versioning for artefacts and their mdtta
based on the functionality provided by the JCR layer.

1 Content based searchDefinition and implementation of context based selay
possibly supported by a query language develofpedhe Orchestration Tool in WP9.

1 Repository Eclipse Client Plugin

1 ARTIST Marketplace

Deliverable D10.3.2 in M30:

I User motification of artefact changes

1 Collection ofuserfeedback (comments, ratings)

1 Functionality to track the (rdusage of artefacts from the repository (via downloads
and feedback from the clients)

1 Support for commercial artefac{#f needed)

1 Updated Repository Eclipse Client Plugin

I Updated ARTIST Marketplace

2.1.2 Innovation

Storage of MDA &efacts and especially EMF and UML models has been the focus of a number

of efforts. CD@ Tene§ and EMFStore [2] handle model storage, versioning and
synchronization between workspace and repository very well while the Morsa prot¢8}pe

focussed on the performant storage and retrieval of large EMF models. Since it is not their
LINAYFNE F20dza GKSAS | LILINBreaDéiri. It B hof Qossibla tzlILI2 NIi
attach descriptions and tags to models and to classify them in categories. They are also

® http://www.eclipse.org/cdo/
4 https://wiki.eclipse.org/Teneo
° https://eclipse.org/emfstore/

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel4 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

focussed on model artefacts and can only handle transformation artefacts if they have been
transformed to a model form.

An estabkhed approach that supports reuse well in the Java world is the automated
dependency management of tools like Apache Mawanlvy. These tools manage software
components that are described by medata. The dependency information that is part of this
meta-data allows the transitive import of software components into software projects thus
effectively enabling their reuse. However, this approach is targeted towards software
components and does not take the specific kinds of dependencies into accountygiealty
occur between MDA artefacts.

The innovation of the ARTIST Repository is to provide a reuse oriented repository for MDA and
migration artefacts with focus on but not limited to model artefacts.will analyse the
dependencies that exist e.g. betee an UML model and the UML profiles and UML packages
that are referenced by it, record this information in a so called Megampfednd use this
information for querying and dependency resolution. The current prototype is a first step in
this direction by providing artefact managemeudgscription of artefacts with metdata like
descriptions, tags and categories and basic searching capabilities. The next iterations will focus
on the more innovative parts described above.

2.1.3 Fitting into overall ARTIST solution

The ARTIST repository storie artefacts produced during migration projedtsat use the
ARTIST tool suite. These artefacts will mainly consist of MDE work products likenousks,

UML profiles as well as modi-text- and modeito-modekransformations. It is not restricted

to this kind of artefacts though and can also handle other documents produced by ARTIST tools
like the goal model or the report of the Maturity Assessment Tool (MAT).

The repositoryorganizeghe artefactswith a categorization systermnd with tagging. The ¢
release will also featura special Repository Content Model that captures the artefact types
and the relationships between the different artefacts in the repositsge Section 3.1.4 in
D10.2[1]). Thiswill openup new possibilities to navigate the repository content and to provide
context based search.

The architecture of the ARTIST Repository allows other tools to use the repository functionality
on three levelgsee also Secti@?.2.1and2.2.3:

1 Service layerOn the lowest level the repository service layer on the server can be
used.This approach will most likely be used to build the ARTIST Marketplace.

1 Web service lagr: External tools can use most of the functionalities provided by the
service layer via the REBdsed web service layer. This option is approprfatenon
Eclipsebased tools andf a tool needs direct access to the artefacts in the repository
This appoachleads to tighter coupling compared to the third option.

1 Eclipse Client Plugin and Eclipse workspabe: Repository Client Plugin for Eclipse
integrates the ARTIST Repository with the Eclipse workspace. Artefacts can be
imported into the workspace ahexported to the repository. This is the preferred way
to use the ARTIST Repository since other Eelipsed ARTIST toolgll not have a
direct dependency on the repository but still can work with the repository artefacts via
the Eclipse workspace.

6 http://maven.apache.org/
! http://ant.apache.org/ivy/

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel5of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

By wsing these integration options other ARTIST tools can use the repository to store and
managethe artefacts they need or produce. A number of possible integration points have
already been described in Section 2.3 of D10]2

1 Integration with the benchmarking software repositorR S& ONA 6 SR Cldugr 5T ®H ®m
services modelling and performance analysis frame#fsk

1 Integration with the ARTIST methodology and the Methodology Process(N&adl)
described iD6.3.1[6]

In addition all the MDibased ARTIST tools like the Model Understanding Toolbox, the
Cloudification Modelling Tool, the Deployment Toottwe Orchestration Tool can benefit from

the repository via the Eclipse workspace. The Orchestration Tool is a special case since it
automates MDEprocesses using a domain specific language and thus needs more direct
interaction with the repository. In cadination with WP9 interactions with the repository
artefacts will be integrated into the domain specific language and the associated runtime.

Other pssibleintegration points with othenon-MDEARTIST tools include

I Storage ofesults of profiling runs
1 Sorage ofperformance stereotypes
I Storage ofesults of feasibility assessments

cmp ARTI ST Suite Architecture

NET App = Java App =

Artist Suite
Browser Eclipse
Enterprise Arquitect 3 | — @)| RepesitenPiugin
ARTIST Tooling ‘?
ARTIST Tooling 5 | aRmsT @]
Reposito
IMadeling E,ug,n“'
alava Editors | Eclipse ing Tool g]
Eclipse JOT

IWorkben m{

o Eclipse Foundation 2]
Ml [
Model E| Warkspace
ARTIST g]
Marketplace
Tmsmm,

ARTIST Repository g]

Figure2: The WP10 components Repository, Marketplace and Repository Plugin (yellow) in the context
of the ARTIST suite.

The ARTIST Repositasyrealized as a server based web service as depictdeeitower right
corner of the overall ARTIST architecture showRigure2. In the nextreleasesthe ARTIST

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel6of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Repository Plugin and the ARTIST Marketplace will build on thécerprovided by this
prototype. Both are shown in yellow iRigure2 and are previewed in this deliverable (see
Section3.3.4and Appendix D).

The ARTIST Repository is the central tool for the tasitseaeuse oriented part of the ARTIST
Methodologyas described in D6.2@RTIST Methodology RdzS : Ay aHn

1 TaskREUSEIBdentify Reusable Artefacts
1 TaskREUSEPUMPublish and Maintain Reusable Artefacts

2.2 Technical description

This section describes tharchitecture, data model and the different components of the
ARTIST Repository prototype. A detailed description of the Java and REST web service API
provided by the repository services to manage artefacts, projects and categories is provided in
the Appendces A to C.

2.2.1 Prototype architecture

The repository prototype consisbftwo main components: the ARTIST Repository server and

the Repository API client. In addition to these compongatsexternal identity server is being

used to provide user managemeand handleXACMId | 8 SR | dzi K2 NRT | GA2Y QAL
Authorization Service (see Secti@®.4 for detaily. The prototype uses the Open Source

WSO?2 Identity ServEfor this purpose. The components and their interactiare displayed

in Figure3.

The main componentf the ARTIST Repositois/ the servercomponent It uses a layered
archtecture to provide its services:

f Thedata layeris provided by the JBoss Modeshd@€R database that provile
standard compliant implementation of the Java Content Repository (JCR) 2.0
specification. On top of the JCR database the J&dramework provides data
mapping capabilities to convert between domain objects and JCR data structures.

1 Therepository serice layeruses the data layer to implement the business logic and
offers the service ARthat can be used by applications to manage artefacts.

1 All calls to the service layer are intercepted byAarthorization Interceptothat uses
the Authorization Sereeto determinevia the access policies managed in tdentity
Server whether the user is allowed to perform the requested action. Sincthe
current prototype priority has been given to providing the core repository
functionality,an appropriateuserauthentication could not be included. Therefaiee
Authorization Interceptor is disabled in the current prototype.

1 The RESTful web service laymovides a REST based web service interface to the
functionalities of the repository service layefhe data epresenting the domain
objects described in the next section is transferred in XML or JSON format.

The architecture of the server is described in more detail in Segtba

® http://wso2.com/products/identity-server
o http://modeshape.jboss.org
10 https://code.google.conp/jcrom

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel7of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Other Tools

Repository API Client

L

XML / JSON over HTTP(S)

Repository |Server WSO2 Identity Server

RESTful Web Service API WETET TIEME R
) . . Access |) .
£ o Authorization Interceptor+Service <= » Access Policy Enforcement Point
g€ Request
5 ﬁ Repository Services Access Policy Management
E -5 Jcrom Data Mapping Framework
— (@
Fon 5% Java Content Repository (JCR) API
< (JBoss Modeshape)

-

A 4

Database
(Artefacts and Meta-data)

Figure3: High level azhitecture and components of the ARTIST Repository prototype.

The ARTIST Repository services offered via the REST based web service interface are
complemented with a Java API client that makes it more convenient for other ARTIST tools or
third party appli@tions to work with the repository API. The Java API client implements the
same service interfaces that are offered by the Repository Service APl on the server thus hiding
the web service communication from the API consumer.

2.2.2 Data model

The data model thaforms the basis of the repository services consists of a set of domain
classes thaare a subset of the data model described int&ec3.3.1 of deliverable D10[2].

The domain clags define the structure and content of the repositag shown irFigure4.

The repository server contains an arbitrary number of collections or projepiesented by

the RepoProject class In these projects the artefactkepoAtefact) are organized in
packagegRepoPackags.

Artefacts are identified by aArtefactld which is a composite of the package, artefact and
version name. Artefacts can be assigned to categoRepdCategory). These categories are
organized in a hierardtal tree structure. Thd&rkepoArtefact class represents the artefact
meta-data. The actual content is represented by tRepoContent interface which allows
storing different kinds of content. The interface has two implementatidfigeContent
stores the aréfact content in the database anebContent merely stores an URL reference
to the external artefact location.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel8of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

class Core /

. RepoProject
RepositoryServer

*projects| _ id :String

1 contains 1 |- name :String
label :String
description :String

+project$ 1

contains
+packages| 0.*

RepoPackage
id :String
name :String
label :String
description :String
+package categories
1
contains
+artefacts|0..* .
RepoArtefact RepoCategory
Artefactld L dStrISr;g id :String
+artefactld - uuid -Sting categories uuid :String
packageld :String . has - name..Strlng R «| - name :Stiing
artefactld :String - Iabel_ :Sting label :String
versionld :String - description :String description :String
- namespaceURI :String .
. i parent :RepoCategory
tags :List<String>
cinterfac
RepoContent
+ getContent() :InputStream
/ \
/ \
/ \
/ \
/ \
FileContent WebContent
filename :String - url :String
mimeType :String
encoding :String

lastModified :Calender

Figure4: Model of the core repositorgatastructure.
Projects, packages, artefacts and categories share some comttninutes:

1 Name The name of the entity. For projects and packages the name is equivalent to
the id. The following rules apply for valid names:
0o tNB2SOG yIFYSY 1ft268R JANLB GIPE LIK Y RIEDNR O O
o Package name: Allowed are alphanumerichaO i-8 NE & & | YR a ®¢
o /G4S3A2NE YyIYSY !tft2gS
o ! NOSTIFIOG ylIYSY 1tt24S

SR -aRBalpE WK ydzYy SNA O
6 SR -6 NBa Y& LIKY B dBY@ENR O
ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Pagel9of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

1 Id: The id uniquely identifies the entity. Projects and packages have simple ids whereas
the id of artefacts and categories consists of a humber of segments. The following
formatting rules apply to the different ids:
o Projectld and Packageld: Same as the name
o Categoryld: Names of the category path from the root category to the
addressed category joine®t3SGKSNJ 6& R2GaxX So3d OF G4§S3
OFrGS32Ne 2F OIFiGS3I2NE 4l d6éd ¢KS yIYS 2F
o ! NISTFFEOGLRY tIF01Fr3S yIYST IINISTFIFEOG yIlYS
OKF NI OGSNY {AyOS OSNBEA2yAyNMa Adaza§RGl & SRS
version name in this prototype. Example id:
eu.artist.uc.dews!gwt_model!HEAD
1 Uuid The UUIDUYniversally Unique Identifi¢mprovides aralternativeway to identify
artefacts anccategorieslt is used internally and might be removedfuture releases.
Label A human readable name of the entity used for display purposes in the GUI.
Description A human readable longer description of the entity used for display
purposes in the GUI.

E R

In addition to these shared attributes the artefactsnche described with a namespace URI
that is primarily useful for modelling artefacts and by a set of tags.

RepositoryClient

€
2 Client Service API ProjectManager ArtefactManager CategoryManager = =
O
REST Client ProjectProxy ArtefactProxy CategoryProxy —
. AN 7\ N - N
] - + b w
3] @ o — @
v & 2 w 80 S|® |2
o Z — o Q [=l 4 o
+ (R B%] (@}
a oo N = ® 3l |
s 9 S < Q 2 |3
= o T) Q o i (@} ~
) wn o 1]
> o o & 3,
> Q
v \4 \ 4 \ 4 9
REST Web Service ProjectResourcelmpl ArtefactResourcelmpl CategoryResourcelmp| == L4
E Security Authorizationlnterceptor
& Server Service AP ProjectServicelmpl ArtefactServicelmpl CategoryServicelmpl =
Data ProjectDAO ArtefactDAO CategoryDAO

Figureb: Architecture and classes of the ARTIST Repository server and API client.

2.2.3 Repository service and client

The archiecture of the repository prototype isertically organized in layeras described in
Section2.2.1. Horizontallythis layered architecture is replicated for the three main services
(ProjectService , ArtefactService and Category Service) offered by the repository
prototype as shown ifrigureb.

The data storage is accessed exclusively by the data access layer that provides data access
objects (DAQOs e.g. ProjectDAO) to the service layer. The service Ilayde.g.
ProjectServicelmpl) implementsa service interfacée.g.ProjectService) that defines

the functionality provided by the service and contathe business logicThe calls coming to

the service APl directly or via the web service layer are captulsd the

AuthorizationInterceptor which determines with the help of the
AuthorizationService if the action is permitted or notThe classes in the REST web
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Page?20of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

service layer(e.g. ProjectResource Impl) implement a web resource interfacée.g.
ProjectResource)andencapsulate all therotocol specific codef the RESAPI layer.

The JAXB implementation provided by thpacheCXF web service framewdtlserializes the

R2YlIAYy 2028034 RSaAaONROSR Ay (KS ftlFrad asSoOodirzy i:
of the request. On the client side this process is reversed. The CXF framework provides a
dynamic web service proxy client that allows the client class IPeagject Manager) to access

the web service via the same interface that was used on the server side (e.qg.
ProjectResource) and that reconstructs the domain objects from the serialized form

received from the web servic8lhe Manager classes (elgroject Manager) in the Client

Service API layer implement the same service interfacesReoppctService) as the srvice

classes on the server thus exposing the same behaviour to a potential client application than

the service on the server.

2.2.4 Authorization service

The Authorization Service (AS) component of the ARTIST Repositoigeprmcess control
functionalitiesto ensure that only authorized users have access to restricedurceslt acts

as an intermediary between the repository and the XACML engine (provided by the external
identity server) poviding a Javbased APland an EMfbased data modelto more
convaiiently use the external XACMiased authorization service.

As described in D10[2], the ABAC moddl’'] has beerchasen asour access contrahpproach
accordingto the XACML reference specificatig@$. In this modelauthorizationdecisiors are
based on a set of rudg(i.e. the access control policies) defining theions (e.g. create, read
etc.) that a subject €.g. a user)can performs upon a resource (e.the artefact) in some
environment conditions.

Following the XACML architectudescribed in[1], the AS mplements aPolicy Enforcement
Point PEP interacting with the Policy Decision Point (PDP) aof external XACML engine
(provided here by the WSO2 Identity Servam) order to allow or deny access to the
NBL2ZaAG2NEQA NBA&A2dzZNDOSa @

The architecture of the AS component is depicte&igure6.

cmp SecurityModuleComponents_w.2/

: |AuthorizationService
RepositoryAPIFacade a Authorization Service @

)
A
/l\ |PolicyBasedAccessControl

1

XACML Engine g]

Figure6: Authorization Service architecture

1 http://cxf.apache.org/
ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?1of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

2.2.4.1 Service interface (API)

In particular, theinterface exposed by the ABmponentimplements the following API
AccessResponse authorize(AccessRequest request)

The provigd API extragthe information contained in the access request in order to generate
the corresponding XACML request and forwaitdo the XACML Engine. Thethenresult of
the authorization decision is returnddeeFigure?).

sd SecureModulelnteractions_v1.0 /

:RepositoryAPIFacade :AuthorizationService XACML Engine

| suthorize{AccessRequest) =

evaluate(Acoess Request)

1

evsluate(XACML Access Reguest)

returnAuthorizationDecision{)

LT

returnAuthorizationDecision{)

H<

R —

Figure7: Authorisation Service interactions

The a&cess request and authorization decisiexpected and provided by the A&we
represented by EMF data structurdsat aredescribedn detailin the following section

2.2.4.2 Security Data Model

Thesecuritydata model describes the structure of the informatiooncerning security aspects
handledin the ARTIST Repository prototyp@ particular, thee securityentities have been
definedin EMFto encodeinformation related to theaccess @ntrol requess andresponse.
Since theauthorization decisiomequires the interaction with XACML engineheir contentis
structured consistently with the XACML language specification

Thefirst version of thesecurity datanodel is depicted iffigure8 using a UMF class diagram

12 http://www.uml.org/
ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?2 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

class Security Data Model
DataTypeldentifier «enumerations
it . «abstracts x500Name
- id :String attributes ibutes fo822Name subj-z_a]
- dataType :String ipAddress securityDomain
- value :String dnsName publicKey
authenticationTime
string authenticationMethod
boolean requestTime
integer sessionStartTime
double authnLocalitylpAddress
time authnLocalityDnsName
date
SubjectAttributes EnvironmentAttributes dsteTi
ResourceAttributes ActionAttributes ol :
anyURI «enumerations
hexBinary ResourceAttributeldentifier
baseB4Binary
dayTimeDuration Baoe
0. ~ ~ 0.1 yearMonthDuration contentTargetNamespace
subject - g environment
SESOERCH action «enumerations
E action
AccessRequest AccessResponse Permit impliedAction
actionNamespace
- decision :EvalustionResult Benic
Indeterminate
NotApplicable «enumerations
EnvironmentAttributeldentifier
contextHandlerCumentTime
contextHsndlerCurrentDate
contextHandlerCumentDateTime:

Figure8: SecurityDataModel

The enumerations irFigure8 provide the keys the access the different attributédso the
methods to access theripate instance variables have been omitted for brevithe entities
and relationshig of the security data model are described below.

An AccessRequest representsa requestfor an authorizationdecision. The access request
contairs information regardinghe subject ofthe request, the resource that the subject want

to access, the action it wants to perform on the resource and the environment context in
which access is requestedin example of a concretaccess requesin the context of the
ARTIST Reposit is presented in the user guide in Sectii.2

An ElementAttributes representsa set of access attributes (se&ccessAttribute
entity).

A SubjectAttributes representsa set of access attributes related to the subjecoiwed in
the access request.

A ResourceAttributes represents a set of access attributes related to the resource
involved in the access request.

An ActionAttributes represents a set of access attributes related to the action involved in
the access request.

An EnvironmentAttribute represents a set of access attribsteelated to the context of
the access request.

An AccessAttribute representsa characteristic of the subject, the resource, the action or

of the environment. This entity is characterised by adentifier (i.e. the identifier of the
attribute that can be one defined by the XACML specifications or defined by your own), a data
type of the attributeand itsvalue.

An AccessResponse represents the result of the access request evaluafiom one ofthe
values defined by theEvaluationResult entity).

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?23of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

An EvaluationResult represents the possible results of the access request evaluation (i.e.
Permit, Deny, Indeterminategnd NotApplicable

A DataTypeldentifier represents the set of access attribute daigpes defined in the
XACML specifications.

A SubijectAttributeldentifier represents the set of access attribute identifiers related
to a subject, defined in the XACML specifications.

A ResourceAttributeldentifier represents the set of access attribute idéiers related
to a resource, defined in the XACML specifications.

An ActionAttributeldentifier represents the set of access attribute identifiers related
to an action defined in the XACML specifications.

An EnvironmentAttributeldentifier represents the st of access attribute identifiers
related to an environment, defined in the XACML specifications.

An example how this generic data structure is used and populated with repository specific
information is provided in Sectidh3.2

2.2.4.3 Integration of the Authorization Service

The next release of the ARTIST Repository web service will provide user authentication and
authorization based on the AS. Security is not included in the current prototype since priority
was given to providinghe core repository functionality. This section describes the integration

of the planed security features on a conceptual level.

The WSO2 dentity Server will be usedto manage the repository users, act as identity
provider for user authentican and adPolicy Decision Point (PDBj authorization. Different
methods of authentication (like JAAS or OAUTH) are currently evaluated for the repository
servicesSuccessful authentication will make the authenticated user and his/her roles available
to the repostory services via securifyrincipals.

Authorization isperformed with help of an Authorizationinterceptor and the AS
described in this sectionThe interceptor is activated by the CDI framework whenever a
secured method in the service layer is aboubtcalled. Information about the called method

is passed to the interceptor. Now the interceptor has to construct an authorization request
that specifies asubjectthat performs anaction on aresourcein a givenenvironment The
interceptor uses the namef the service class and the called method to determineabton
attribute. The subject attribute is constructed from the security principals and typically
contains the unique user id. Thiesourceattribute can be computed from the parameters of
the caled method and contains the type and id of the addressed domain object.

The AS is then invoked with the authorization request and retamaccessResponse that
contains the access decision of the PDP. The interceptor will then throw an exception when
access has been denied. Otherwise the interceptor triggers the execution of the service
method. An example of this process is provided in SecB@i2

2.2.5 Technical specifications

The prototype is realized in the programming langudgeaversion 1.7 It uses several Java
standards such asAXRSfor REST based web servicd&Rfor data storage, CDI for

3 http://wso2.com/products/identity-server/
ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?4 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

dependency injection and the services of a JEE compliant web application skpashe
Mavert*is used as build tool.

The followingechnologies are used in this prototype:

Application server: Apache TomEE Plus ¥ éhich includes the following Open Source
technologies (Apache license):

1 CDI Apache OpenWebBeans
1 EJB Apache OpenEJB

1 Servlet- Apache Tomcat

1 JAXRS Apache CXF

For stoage the JCR compliant solution JBoss Modeshape'3tidt supports the JCR 2.0
specification is used (currently LGPL, Apache license in the next version). It uses a H2
databasé’in the background. To map data objects to the JCR storage the mapping foaknew
Jerom?® is used (Apache licensdh addition the prototype usesome convenience methods

for working with collections and null values provided by tBeogle Guavd library (Apache
license).

For testing JUrft is used.

The Authentication Servicdnasal been implementedusing the Java languagad requires
the JavalRE 1.7

Regarding the XACML engine implementation, the one provided by the WSO2 Identity Server
(WS021$j has been choserlWS02ISs an open sourcand high performancédentity and
entittement management serveplayingthe role of Policy Administration Point (PAP), Policy
Decision Point (PDP) and Policy Information Point (RiRarticular, the WSO2IS exposes its

PDP functionalities in a loosely coupling manner by use of web servicesPdliny
Enforcement Point (PEP) can interact with the WSO2IS PDP using its web service client called
EntitlementService . Therefore, the AS component provides its authorizations
functionalities interacting with the PDP client of the WSO2IS.

1 http://maven.apache.org/

1 http://tomee.apache.org/apachéomee.html

'® http://www.jboss.org/modeshape

" http://www.h2database.com/html/main.html

'8 https://code.google.com/pljcrom/

% http://code.google.com/p/guavdibraries/

20 http://junit.org/

2 http://wso2.com/products/identity-server/

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu

Page?25of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

3 Delivery and us age

3.1 Package information

The prototype delivered in this deliverable consists of the following components contained in
subfolders of main directory:

1 RepositonClient First version of the ARTIST web service client that provides a Java
API to tools that wat to use the repository. The folder also contains a small demo
application to illustrate the usage of the API.

1 RepositoryServer First version of the ARTIST Repository server that provides the
repository services via a REST based web service interfaeefol@ier includes the
runtime of the repository service deployed in the Apache TomEE application server.

1 RepositoryAPtJavaDocGenerated documentation of the Repaository API.
1 AuthorizationServicePrototype of the Authorization service that will be usedsecure
the ARTIST Repository.
1 RepositorySourceCode Contains the source code of the submitted components.
1 PreviewsContains a preliminary preview of the ARTIST Repository Eclipse Client and a

static mockup of the ARTIST Marketplace.

Installation andusage of the components are described in the following sections and in the
README files in the respective directories.

3.1.1 Repository server
The ARTIST Repository Server prototype is delivered in two:forms

1 Web application archiveepo.server.war This WAR I contains the repository web
service and all its direct dependencies. Since the JCR database is not deployed in the
web application, this WAR file cannot simply be deployed in any application server.
Therefore the second option is provided.

1 Server runtine with installed application and JCR database: the fadgeichetomee
runtime contains a complete instance of the Apache TomEE application server
including the Modeshape JCR database and the ARTIST Repository web §hevice.
server will run on port 8081.

3.1.2 Repository client

The repository client that other applications can ueeaccess the Repository services via a
Java interface is delivered in threpo.clientl.0.0.jar file. The required dependencies are
provided in thelib folder.

The client comes with short demo program that indicates the usage of the repository service
and demonstrates the following actions:

createa project

createseveral categories

createan artefact with content
retrievethe artefact record and content
createadditional artefacts

search artefacts by tags and categories

E R N

The demo requires a running Repository server on port 808is started via the file
runDemo.bat The foldeldemo_inputcontains a file that is being published to the repository.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page26 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

3.1.3 Authorization service

The structue of the AS software package is described below:

\---AuthorizationService_v1.0
+--doc <directory>
+---lib <directory>
+---resources <directory>
| +---config.properties <file>
| +---wso2carbon.jks <file>

+---eu.artist.repositoy.security.authorizationservice_v1.0.jar <file>

The doc directory contains thejavadocdocumentation. Thdib directory contains the set of

libraries required to use the AS. Thesourcedirectory contains configuration files. Finally,

the eu.artist.resitory.security.authorizationservicel.Qjar file is the AS jar library.

3.1.4 Source code

The folder RepositorySourceCode contains the source code of the ARTIST Repository
components. It is structured as a hierarchical set of Apache Maven projects andéas t

following folderstructurewhich follows the Apache Maven convention:

\---Repository
+---AuthorizationService_v1.0
| +---doc
| +-java
| | \--test
| +-ib
| +--policy
| \---resources
+--repo.client
| \---src
| +--main
| | \--java
| \--test
| +-java
| \--resources
+--fepo.common
| \--src

| +--main

| | +djava

| | \---resources

| \--test

| +-java

| \--resources

+---repo.eclipse.client

| +---icons

| +--METAINF

| \---src

\--repo.server
+---locatmavenrepo
\--src

ProjectTitle: ARTIST

Page?27of 61

Contract No. FR3178&9
www.artist-project.eu

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

+---main

| +-java

| +---resources

| | +---METAINF

| | \---WEBINF

| +--tomee

| | +--conf

| | \--ib

| \---webapp

| \---WEBINF

\--test

+-java
\--resources
\---METAINF

3.1.5 Previews

In addition to the software actual part of the deliverable two previews are provided:

1 The MarketplaceMockup directory contains a static HTML prototyé the ARTIST
Marketplace

1 The RepositoryEclipseClientPreview directory contains the currentin-progress
versionof the Eclipse client that can be seen as an early GUI prototype.

3.2 Installation instructions

3.2.1 Repository server

To run the provided alh-one application server, go to the foldetROOT>/Repository -
Server \ apache-tomee-runtime \ bin and execute thestartup.bat or startup.sh
script. The server will start on port 8081.The folder <ROOT>/Repository -
Server \ apache- tomee- runtime can be copied to a differg location, if this is desired.

To build and run the server from source, tha@lowing prerequisites are required on the
machine:

I Java 7 SDK has to be installed
f Maven3Kl & (2 o0S AyadlttSR YR (KS aY@yé¢ 02YYl)

To build the systemgo to the folder<ROOT>/Repository - Source - Code and issue the
command

mvn clean install

This will download all build time dependencies, build the projects and publish all Maven
artefacts to the local Maven repository. In order to run the server, issue:

cd Repository/repo.server
mvn tomee:run

There two commands will download the Apache TomEE application server, download and
install the Modeshape JCR database, configure and start the server and deploy the Repository
services to the server instance.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?28of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

The tes suite that comes with the servecan be run by executing the following command in
the same folder:

mvn test

3.2.2 Repository client

To use the Repository client in an application, the JARrdim.clientl.0.0.jar and the
dependencies contained in thié directory have to be on the class path of the application.
Both JAR file and dependencies can be found irRigositoryClientfolder.

3.2.3 Authorization service

To install and use theuthorizationService(AS)these instructions must be followed:

1 Add tothe application classpath thé\Sjar library along with all thé¢ar files contained
in the dibé directoryof the AS software package (seection3.1.3.
f ¢KS aNBaz2dz2NOSa¢é¢ RANBOG2NE 2F (GKS lifjg a2Fdsl N
RANBOG2NE 2F &2dzNJ F LK AOF A2y d ¢KS 402y FA3d
1 Download the WSO2 Identity Server distribution and run the sebpefore usingthe
ASAPI described in Secti@n2.4.1and Sectior8.3.2

3.3 User Manual

3.3.1 Repository API

The ARTIST repository client provides the interface defined PinjectService
ArtefactService and CategoryService to client applications of the repository services.
These interfaces and the underlying RE®&sed web service calls defined by
ProjectResource , ArtefactResource , andCategoryResource are describd in detail
in the Appendices A tG.

In order to show the basic usage of the provided APpractice a demo application is
provided with the repositoy client libraryin the folderRepositoryClient The folder contains
the file Demo.javathat shows how to deal with projects, artefacts and categories. The
following excerpts highlight different aspects of the API.

'/ Create connection info with credentials (not necessary at the moment)
ConnectionInfo info = new ConnectionInfo(B4SE, "user™, “"password”);

/{ Get the web service client
RepositoryClient client = new RepositoryClient(info);

// Get the manager components

ArtefactManager artefacts = client.getfrtefactManager();
CategoryManager categories = client.getCategoryManager();
ProjectManager projects = client.getProjectManager();

Figure9: Coc snippet to initialize the Repository client.

When the Repository API igsed via the Repository client, the first step is to set up the
O2yySOGA2Y AYyF2NXIGA2Yy AyOf dzZRAYy3A { KPRguredSNIBA OSQa
demonstrates thisstep. Once the client is initialized, a set of managers provide the
functionality of the different aspects of the ARtigefacts, projects and categories).

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page?9of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

f/ Create custom project
ProjectName useCase = ProjectName.of("useCase.dews");
projects.create(useCase, "DEWS", "DEWS use case");

/ List projects in repository

L15t<REpDPruject> initialProjects = projects.findAllProjects();

Figurel0: Code snippet tereate and retrieve Projects

Figure 10 shows how to create a project and get the list of all projects in the repository.
Projects are described by a label and a description and are identified by a unique

ProjectName , which can contain alphanumeric charaéter @ ®H§ R a ¢ ¢

0]

// Create categories

CategoryName mdaName = CategoryName.of("mda™);

categories.create(mdaName, "MDA artefacts", "MDA artefacts");

categories.create(CategoryName.of ("mda.models™), "MDA models”,
"MDA models™);

RepoCategory umlCat = categories.create(

J// List categories in repository
Optional<RepoCategory> mda = categories.getTree(mdaName);

CategoryName.of("mda.models.uml™), "UML models™, "UML models™);

Figurell: Code snippet tareate and retrieve categories.

Categories form a hierarchical tree structure. A category can only be created, if the parent

category already exist§-igurell). Theid of a category, represented by th@ategoryName

class, is composed of the names of all categories on the path from the root category to the
category in questions. The id works like a file path with dots instead of slashes to separate the

path segmentsLike projects, categories are described by labels and longer descriptions.

'/ Create and upload an artefact
'/ Prepare FileContent
File umlFile = new File("./demc_input/ConceptualOverview.uml™);

'/ Prepare the artefact record

ArtefactId profileld = ArtefactId.of("eu.artist.uc.dews™,
"pricing_profile™};

Repofrtefact pricingProfile = new Repofrtefact.Builder(profileld)
dlabel("PricingProfile™).description("The pricing profile™)

.build();

artefacts.create(useCase, pricingProfile);

FileContent attachment = FileContent.of(umlFile, "application/xml+uml™});

tags("dews").categories(umlCat.getId()).content({attachment)

Figurel2: Code snippet t@reate an artefact record and attach content to it.

Artefact records that contain the artefact description and mdtda are created using a

Builder that enables to set the different properties of the artefact with a fluid interf&ogufe

12). In addition to a label and description, artefacts can be associated to categories and can be
assiged a set of tags. An artefact is idd@d by a package name, an artefact name and (in

later releases) a version name. The artefact id is constructed by concatenating these three
aS3aAYSyida dzaAy3a aHé A &SLI NI G2 Nr thé Stefzpt ilNI A

Figure1?). The actual content of the artefact is provided througFkikeContent

object as

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu

Page30of 61

a i odzC

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

shown inFigure12. Since artefacts are organised in projects, a project has to be provided
when creating an artefact.

/f Get artefact from server
Opticnal<RepoArtefact> retrieved = artefacts.get({useCase, profileId);

'/ Find artefacts tagged with 'gui’

List<RepoArtefact> tagResults = artefacts.findByTag("gui");

'/ Find artefacts in category umlCat

List<RepoArtefact> catResults = artefacts.findByCategory(umlCat
.getCategoryName());

Figurel3: Code snippet taetrieveand query artefacts.

Once a number of artefacts have been created, they can be retrieved and searched in various
ways. Figure13 shows how toretrieve an artefact by its id and how to search artefacts by
category or tag.

In addition to the API description in Appendix A to C, further information on the API and its
usage can be obtained in the generatddvdoc documentation(see to RepositoryAP}
JavaDodolder) and in the test cases that can be found in BepositorySourceCodefolder

dzy RS NJ (i Repositodjrépé serireYsrdtestjaveé d

3.3.2 Authorization Service API

The Authorization Service provides an API client to access the X@BeSkIL authoization
service of the identity server in a convenient wétyprovides essentially one method that
sends an authorization request to the server and receives the resulting access decision. The
service can be used as indicated in the code showigarel4.

First an instance of thé\uthorizationService is retrieved. Then the request to the
authorization service is constructed by populating an Hdésed data structure. The request
containsfour information items:

1 SubjectThe user alling the service. In the context of the repository this information
can be obtained by getting the usBrincipal from the HTTP request or by querying
the security system of the TomEE application server.

i Action: The action specifies the operation to be erformed. The

AuthorizationInterceptor is always invoked before a secured operation is
executed. It can determine the names of the service class and the invoked method and
dzaS GKA& AYTF2NXIFGA2Y (2 O2yaidNuzOG | &aiNRY:
represents the operation.
1 ResourceThe Authorizationinterceptor can also access the parameters of the
secured method and get the type and id of the domain object targeted by the action.
Using this information it can construct a string like e.g.
Gk NIYSSFdzddiNJi A 8 0 PRSaHISAaGYY2RSt HMonodné GKI G
resource.

1 Environment:The environment can describe the context of the method execution.
Currently this information is not used.

Based on the request the service determines the accesssin as showin Figurel4 that
can then be acted upon.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page3lof 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

/f Gets the AuthorizationService instance
AuthorizationService as = AuthorizationServiceImpl
.getdAuthorizationService();

!/ Creates the access request for

/f - user "admin" (determined by the security principal)

/f - action "update” (determined e.g. from the service class and method)

/f - resource "..." (determined e.g. from the service parameter)

AccessRequest accReq = createAccessRequest(“admin”,
"ArtefactService.update”,

"artefact:eu.artist.dews!test_model!l.8.8");

try {

/f Invokes the authorization request

AccessResponse resp = as.authorize(accReq);

EvaluationResult decision = resp.getDecision();

if (decision == EvaluationResult.PERMIT) {
/f Allow access

} else if (decision == EvaluationResult.DENY) {
// Deny access

} else if (decision == EvaluationResult.INDETERMINATE) {
/¢ Access rights can not be determined

} else if (decision == EvaluationResult.NOT_APPLICABLE) 1
/! Access rights can not be determined

} else {
/4 Unknow result

} catch (AuthorizationServiceException e) {
/{ Handle exception, e.g. by denying access
h

Figurel4: Usage example of the Authorization Service

The assembly of th&ccessRequest is shown inFigurel5 and Figure16. The two figures
show how the EMF data structures are created and populated with the request data.

private AccessRequest createfccessRequest(String subject, String action,
String resource) {

* Creates the access request

W % _..'

AccessRequest accReq = Security_ModelFactory.eINSTANCE
.createfccessRequest();

/f Adds the subject attributes to the access request
accReq.setSubject{createsubjectattributes (subject));

/f Adds the resource attributes to the access request
accReq.setResource(createRescurceAttributes(resource));

/f Adds the action attributes to the access request
accReq.setAction{createActionAttributes{action));

return accReq;

Figurel5: Creating amccessRequest .

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page32of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

private SubjectAttributes createSubjectattributes(String subject) {
// Creates the subject attributes
AccessAttribute subjectAttribute = Security ModelFactory.eINSTANCE
.createAccessAttribute();
subjectAttribute.setId(SubjectAttributeldentifier.SUBJECT. toString());
subjectAttribute.setDataType(DataTypeldentifier. STRING. toString());
subjectAttribute.setValue(subject);

SubjectAttributes subjectAttributes = Security ModelFactory.eINSTANCE
.createSubjectAttributes();

subjectAttributes.getAttributes().add(subjectAttribute);

return subjectAttributes;

Figurel6: Exemplary creationfahe SubjectAttributes object. ResourceAttributes and
ActionAttributes are created analogously.

3.3.3 User and security management

Theadministrator of the ARTIST Repository can marnhgeausers of the repositoryand their
authorizatiors using theManagement Cosoleprovided by the WSO?2 identity Server.

Once the server has started the magement console can be accessgging its URL(i.e.
<identity server hostname9443/carbon)in a Web browser The main page of the
management console is depicted iRigure 17. The administrator must provide its
authentication credential to use the console.

) wso2 Management Console + ; = ! ! -

(' @ https://localhost:9443/carbon/admin/login.jsp| c E—G:-:gf PR & @

V- g Management Console
Ws@, B r
Id mwse"e Sign-in | Docs | About

Home

Help
Identity A @ '
~ - User Guide
Sign-up 2.\ WS02 Carbon user guide.
&2 OpenID Sign-in / Stgn—m
Username gdmin
Forum
The interactive message board for sharing information, questions Password geeee

and comments about WSO2 products.
[C] Remember Me

Sign-in
[] Issue Tracker
= Users are encouraged to report issues & suggest improvements
\7§/ using the JIRA issue tracker. In addition, users can observe the Sign-in Help

status of the reported issues in progress.

Mailing Lists
Report issues, provide feedback & get help from our mailing lists.

Figurel7: WSO02 Identity Server Management Console

3.3.3.1 User management

The administrator can manage the user of the systefiNtR dzZ3 K (G KS da! &S
management GUI (seBigure180 @ Ly LJ NI A Odzf NE GKS awz2ft S
define roles that, in oucontext, represent a collectioaf users (i.e. groups) for which access

control restictions (i.e. access control policies) can be defined.

NJ | YR
ag Gt

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page33of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/05/2014

ARL73 |dentity Server

(<| Configure A ‘

Home > Configure > Users and Roles

@ Users and Roles
User Management

@ User Store Management

[laim M t
—‘Q S anagemen System User Store

KA Features -

@ Users
o~ KeyStores
= : = =% Roles
3 Trusted Identity Providers -

5 XKMS
= Change Password
[i-] Logging
& Server Roles _ Change My Password
| V S
gh Multitenancy

& Add New Tenant

Manage Challenge Questions

Add Questions

= View Tenants
Figurel8: WSO2 Identity Server User management GUI
Figurel9shows an example of roles definitions:

T the publicrole: represens the collectionsof uses that are authorized to make only
read request®n therepositayQd NB& 2 dzZNOS &

1 the ARTISTProjecble: represens the collections of users that are enabled to make
requests such asreae project, update artefacts etan(i KS NB L2 4 A (.2 NB Q&

Home > Configure > Users and Roles > Roles

Roles
Search
Select Domain | ALL-USER-STORE-DOMAINS ¥
Enter role name pattern (* for all) [* }ﬂh\
Name Actions
admin \Z Assign Users R View Users
ARTISTProject ;{ Rename ?; Permissions f/ Assign Users ! View Users j Delete
Internal/everyone \Z# Permissions
public \Z Rename |3 Permissions |32 Assign Users I View Users {fif Delete
test [z Rename [3» Permissions |5 Assign Users I View Users {fj Delete

€ Add New Role
€) Add New Internal Role

Figurel9: WSO2 Identity Server Roles Management GUI

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page34 of 61

&b

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Figure 20 and Figure21 depict an example of user definition and usete assignment. In

particular, the example showshat the usera . 2 ié defined andit is assigned to the role
GLJzo f A O¢ @

Home > Configure > Users and Roles > Users

Users

Search

Select Domain ALL-USER-STORE-DOMAINS ¥
Enter user name pattern (* for all) Search
Name Actions

admin &7 Change P,

£ Assign Roles R View Roles

Bob &7 Change Pas

b Accion Roles View Roles
g7 Assign Roles * View Roles

) | Eh ke
Iy
o
g
o

test g7 Change Password (g7 Assign Roles *\e Roles g Delete :, User Profile
© Add New User

Figure20: WSO2 Identity Server User Management GUI

Role List of User : Bob

Enter role name pattern (* for all) [«

Search|
@ Select roles and Update to assign them to user Bob
Unassigned Roles
Select all on this page | Unselect all on this page
admin M View Users
test v Permissions R View Users
¥ public =2 Permissions Ik View Users

ARTISTProject 32 Permissions Mk View Users

Update| |Finish| |Cancel

Figure21l: WSO2 Identity Server Users Management GABsign Role
3.3.3.2 Security management

The administrator of the ARTIST Repository can manage the access control policies using the
Gt 2t A0& ! RYAYA &G NI G ARgrée22 Qetiisicansofe idlpassibleftof vidza, G NI G S R
edit, or publish the polieis into the PDP. Moreover, new policies can be defined.

ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Page350f 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

.
Identity Server

(<| Home
Home > Entitlement > PAP > Policy Administration
Entitlement A Poli Admiinistrati
olic ministration

S PAP Yy

5 T Policy Administration
- © Add New Entitlement Policy
2 Policy Publish
5| S POP
= = Policy Type | ALL v Search Policy A
S 2 Policy View
=
$2 Extension ele 1 -
%' Extensio Select all in this page Select none i Delete A publish Vz Publish All
S| S pep
2 Trvit Available Entitlement Policies
E £H Ty
g Q Search MyTestPolicy © Policy Z Edit [Versions @ Publish ToMy PDP £ Try R View Status
Manage ~ MyTestPolicy2 ¥ Policy 2 Edit @ ? Publish To My PDP £ Try B View Status
ML SS £ ey -
W SAMESSO Sample © policy @ Edit 3 P Publish To My PDP £ Try R View Status
Z\ NAuth

Figure22: WSO2 Identity Server Policy Administration Console

Figure23 provides an example afew policy definition. In particular, the exampdiefines a
L2t A0 F2N) s KAOK (KS dzaSNhR o6Sf2y3Aay3a G2 GKS alL
resources.

Edit XACML Policy
Entitlement Policy Name™ Public_User_Policy1

Rule Combining Algorithm Deny Overrides v

v This Policy is going to evaluated, Only when followings are matched....

~ Define Entitlement Rule(s)

Rule Name~® Public_User_Read_Permit

Rule Effect Permit v

Resource Names is/are ¥ || equal ¥ ||artefact =

User's Raole v ||isfare ¥ | equal ¥ ||public o
Action Name is/are ¥ | equal ¥ read o
Environment Name Time Y | is/are ¥ | is-in v J

Update| |Cancel

Figure23: WSO2 Identity Server Policy Administratiddew Policy

Finally, once the XACML pddisiare publishednto the PDP{i KNR dzZ3 K G KS dat 5t t 2f ;
(Figure24) is possible to enable or disable them.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page36 of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/05/2014

PDP Policy View

Policy Combining Algorithm | permit-overrides v | |Update|
Search Policy \ 3

Order Id Type Actions
0 | MyTestPolicy © rolicy | Ry Disable {fj Delete [Edit Order
0 | MyTestPolicy2 ©rolicy | R Enable i Delete [Edit Order
0 | Public_User_Policyl © Policy | R Enable i Delete [F Edit Order
0 | Sample © Policy | Qs Enable i Delete (g Edit Order

Figure24: WSO2 Identity Server Policy Administrati@nable policy

3.3.4 Repository Eclipse Client

The ARTISRepository Eclipse Cliepteview provides some initial elements of the Repository
Eclipse GUI planned for the next release.

Under Window-> Preferences> ARTIST Repository new Repository connections can be
configured(seeFigure25andFigure26)® 5 A FFSNByYy G NBLR aAAG2NASa | NB
content will be displayed in the Repository Browser.

The Repository Browser shows the content of the configured repositories Higgge 27).
Currently only statically prepared content can be displayed though. The browser offers
commands to upload and download artefacts from the repositories.

A functional and technical description of the Eclipse plugin will be provided withirste f
working version.

Repository Factory Object

Marne | Main Repository

Repository URL | http:/ artist.iac.fraunhofer.de/repo

Lsername | strauss

Password

©)

Figure25: Creation of a new Repository connection.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu

Page37of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/05/2014

| type filter text Repository Connections

I» General
> Ant
a4 ARTIST Repository Mame Description
Repository Connections : Main Repositery http://artist.iac fraunhofer.de/repo
ATL
Content Repository

A demonstration of a preference page implementation

Copyright Tool

Data Management
Dynamic Languages
Ecore Tools Diagram
EMF Facet

Help

Install/Update

Java

Java EE

Java Persistence

JavaScript

| Restore Qefaul‘ts| | Apply |

Maven

® | OK | | Cancel |

Figure26: Management of Repository connections.

Repository Browser 3 = 8

&= ¥
4 LecalRepository
4 | | Package_1
ArtifactFile_1
ArtifactFile_2
4 || Package 3
ArtifactFile_3
| | ArtifactFile 6 |
4 [5] ARTIST-Repository
a4 || Package 2
ArtifactFile_3
ArtifactFile_4

Figure27: Repog#ory content in the Repository Bveser.

3.3.5 Marketplace Mock -up

The second preview packaged with this deliverable demonstrates the first ideas for the ARTIST
Marketplace forMDA and migration artefacts. The Moag is currently comprised of a set of
static HTML paged.o view themockup, goto the Previews/MarketplacéMockupfolder and

open the fileindex.htmlin a web browser.

Screenshots of the moeakp can beoundin Appendix D.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page38of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

3.4 Licensing information
TheARTIST Repositgpyototype is released under EPL liceNseQ

TheAuthorization serice componentof the prototypeisreleased under LGPL license V3.0

3.5 Download

The source code of the two prototypes is delivered alongside the binary components and this
document as a zip file that has been put on the ARTISTLi(lkyeepository in the
G5tSABOSNFof Sakamyé F2f RSNID

Apache Maven can be downloaded frdwtp://maven.apache.org/download.cgi

The Java SDK 7 can be downloaded from
http://www.oracle.com/technetwork/java/javase/downloads/jdkdownloads1880260.html

The WSO2 Identity Server v4.5.01¢e downloaéd at the following link
http://wso2.com/more-downloads/identityserver/.

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page39of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

4 Conclusions

This document described the prototypsf the ARTIST Repository including the services to
manage artefacts, projects and categories and to retrieve artefactisl, project, package, tag

or category. An Authorization Service that will be used in the next repository version provides
Attribute Based Access Control. In addition to these software components, previews of the
coming Eclipse client plugin and the ARIT Marketplace GUI are provided.

The layered architecture of the repository allows external tools (like the other ARTIST tools) to
access the repository functionality on three levels: via the RfaS&d web service provided by

the server, via thdavabasd service API provided by the server and the API client, and via the
Eclipse Client Plugin to be delivered in the next release.

The next steps in the development of the reposittoyards the internal release in M2dre
(as defined in Sectio®.1.1)

9 Authentication via OAUTH and finishing of the integration of the Authorization Service
1 Implementation of the BpositoryContent Model to manage artefact relationshipsid
extraction of metadataand dependency informatioftom artefacts

1 Artefact \ersioning
1 Definition and implementation of context based search, possibly supported by a query
language developefbr the Orchestration Tool in WP9
T Integration into the Eclipse ID&a the Eclipse Client Plugin
9 First version of théRTIST Mketplaceweb application
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Paged40of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

hft A@GSNJ {(iN}Ydziz {GSTFLYyALl 5Q! 32a0AYAZ | dAaA2 . NI
¢CFLAOAFYl {Syl2@l >3- Téchniwat anfl informafidln@HiteMNEE | we L { ¢
Project, Deliverable D10.2, Sep. 2013.

M. Riebisch, S. Bode,-Q-! @ CIF NR21ljZ FYR {® [SKYSNIZ a¢26él NI
bylnterY2 RSt [Ayl1a !&aAy3a Iy LYGSBNIGAYy3I wSLRAAG?2
J. Espinazo Pagan, J. SanchezCudd2 = | YR W® DI NONIF a2t Ayl S da?2l
F2NJ t SNBAAGAYT | yR IModaIDaver BAginedring Ndh§uagas2aRdS f & T ¢
Systemsvol. 6981, J. Whittle, T. Clark, and T. Kuhne, Eds. Springer Berlin / Heidelberg,

2011, pp. 7292.

J.STAQGAYIZ Cod W2dz dzf 4§ | yR t & =+ BestRamtideSfor: ahy
ModelDriven Software Development workshop (Proceedings of the OOPSLA/GPCE 2004)
Vancouver, BC, Canada, 2004.

D® DAFYYIFGGS2 YR bao | dicesDmotleling ia&isperfarmandel { ¢/ f ;
FyFrfteara FNIYSE2N]IZ¢é !weL{¢ tNRB2SOUX 5StADSNI
A. Menychtas, L. Ordechevarria, J. Alonso, H. Bruneliére, J. Canovas, O. Straul3, J.
D2NNR3232A0AFTX .o tStftSyas yYyRrO®ad!l ¢lF VEH RR]
ARTIST Project, Deliverable D6.3.1, Sep. 2013.

+® [/ ® | dzZ 5 CSNNIA2f2> wd YdKyI ! @ wd CNRS
' GGNROGdzGS . FaSR ! 00Saa /2yiGNBt 6! .1/ 0 5STFAYA
SpeciaPublication 80a162, Apr. 2013.

ah! {L{ S-dSyairoftsS 1| 00Saa /2y aNRt [Calingl] dzLJ [}y
Available: https://www.oasi®pen.org/committees/tc_home.php?wg_abbrev=xacml.

[Accessed: 1-dut2013].

ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Paged4lof 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

5 APPENDIXA: Project API

Projectsin the ARTIST repository represent collections of artefacts that are logically associated
with the same level of visibility. A project can e.g. be used for each use case thus enabling to
restrict visibility of artefacts to one use case if desired. ThgeptoAPI supports reading,
creating, deleting, updating and listing projects. Projects are represented by the
RepoProject domain class.

The service layer API of the Project service is defined in the intePiagectService . The
REST API is defined in tikerface ProjectResource . Both interfaces can be found in the
repo.common project.

lff26SR OKEFNI OGSNAE F2NJ LINP2SOG -6l YR @ plespa | NB
5.1 Create projects

5.1.1 Service layer API

Signature public RepoProject create(ProjectName proj ectld, String
name String description);

Description Create a new Project. A project is a collection of artefacts. If the projet
with the given id already exists, the given properties are updated in thi
existing project.

Arguments 9 projectld The id of he project
I name The human readable label of the project
9 description The human readable label of the project

Return value The newly create®RepoProject instance.

Exceptions None

5.1.2 REST API

Uri apil/projects/{projectid}
e.g.:
apil/projects/test_project?na me=Another+test+project&des
cription=This+is+a+second+test+project

Description Creates a new project. The project id is specified via the resource UR
other parameters are provided as query parameters.

Request Method 1 POST

Parameters 1 projectld[URI]} The id of the project

1 name[query} The human readable label of the project

9 descriptionjquery} The human readable label of the project
Body Empty
ProjectTitle: ARTIST Contract No. FR31789

www.artist-project.eu
Page42of 61

D10.3.1¢ Repository Prototype Version: v1.0Date:13/052014

Request Headers § Accept (optional)
i ContentType

Response The created project record, e.g.:

<project id="t est_project” label="Another test project”
name="test_project">
<description>
This is a second test project.
</description>
<packages />
</project>

Response Heade i Location

Response Codes ¢ 501 Created

5.2 Get projects
5.2.1 Service layer API

Signature Optional<RepoProject> getShallow(ProjectName projectid);
Optional<RepoProject> get(ProjectName projectld);

Optional<RepoProject> getTree(ProjectName projectld);

Description Gets and existing projecggetShallow only retrieves the direct propertie
of the project,get also retrieves the packages associated with the proj
andgetTree retrieves the complete object tree containing packages a
associated artefact records.

Arguments 9 projectld The id of the project

Return value TheRepoProject instance withassociated objects depending on the
variant used.

Exceptions None

5.2.2 REST API

Uri apil/projects/{projectid} ?mode=[shallow|full|tree]

Description Gets the project specified by the resource URI from the database. The
omodeg query parameter determines the g@éh of the retrieved object
tree.

Request Method 1 GET

Parameters 1 projectld [URI]The id of the project

ProjectTitle: ARTIST Contract No. FR31789
www.artist-project.eu
Page43of 61

