
D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 1 of 61

ARTIST

FP7 - 317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

Deliverable D10.3.1

Repository Prototype M18

Editor(s): Oliver Strauß

Responsible Partner: FRAUNHOFER

Status-Version: V1.0

Date: 13/05/2014

Distribution level (CO, PU): PU

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 2 of 61

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable: Repository Prototype M18

Due Date of Delivery to the EC: 31/03/2014

Work package responsible for
the Deliverable:

WP10

Editor(s): Oliver Strauß

Contributor(s):
Oliver Strauß (Fraunhofer), Stefania D'Agostini
(Engineering)

Reviewer(s): Yosu Gorroñogoitia, ATOS

Approved by: All partner

Recommended/mandatory
readers:

WP5, 6, 7, 8, 9, 11, 12

Abstract: This deliverable is a working prototype that
comprises the second iteration of the internal
repository including the first iteration of the public
repository web interface as described in D10.2 as
well as developer documentation.

Keyword List: Repository prototype, artefact management

Licensing information: The authorization service is published under LGPL
v3 license. All other components are published
under EPL v1.

The document itself is delivered as a description
for the European Commission about the released
software, so it is not public.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 3 of 61

Document Description

Document Revision History

Version Date

Modifications Introduced

Modification Reason Modified by

V0.1 07/03/2014 First version Fraunhofer

V0.2
14/03/2014 Added description of the security

module component
Engineering

V0.9 05/05/2014 Version for internal review Fraunhofer

V1.0 13/05/2014 Final version Fraunhofer

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 4 of 61

Table of Contents

Table of Contents .. 4

Table of Figures ... 6

Table of Tables .. 7

Terms and abbreviations ... 8

Executive Summary ... 10

1 Introduction .. 12

1.1 About this deliverable ... 12

1.2 Document structure .. 12

2 Implementation ... 13

2.1 Functional description ... 13

2.1.1 Roadmap ... 14

2.1.2 Innovation ... 14

2.1.3 Fitting into overall ARTIST solution ... 15

2.2 Technical description .. 17

2.2.1 Prototype architecture .. 17

2.2.2 Data model .. 18

2.2.3 Repository service and client .. 20

2.2.4 Authorization service .. 21

2.2.4.1 Service interface (API) ... 22

2.2.4.2 Security Data Model .. 22

2.2.4.3 Integration of the Authorization Service ... 24

2.2.5 Technical specifications ... 24

3 Delivery and usage .. 26

3.1 Package information ... 26

3.1.1 Repository server .. 26

3.1.2 Repository client.. 26

3.1.3 Authorization service .. 27

3.1.4 Source code ... 27

3.1.5 Previews .. 28

3.2 Installation instructions ... 28

3.2.1 Repository server .. 28

3.2.2 Repository client.. 29

3.2.3 Authorization service .. 29

3.3 User Manual .. 29

3.3.1 Repository API ... 29

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 5 of 61

3.3.2 Authorization Service API .. 31

3.3.3 User and security management .. 33

3.3.3.1 User management ... 33

3.3.3.2 Security management ... 35

3.3.4 Repository Eclipse Client ... 37

3.3.5 Marketplace Mock-up ... 38

3.4 Licensing information .. 39

3.5 Download .. 39

4 Conclusions ... 40

References ... 41

5 APPENDIX A: Project API ... 42

5.1 Create projects .. 42

5.1.1 Service layer API .. 42

5.1.2 REST API ... 42

5.2 Get projects ... 43

5.2.1 Service layer API .. 43

5.2.2 REST API ... 43

5.3 Update projects ... 44

5.3.1 Service layer API .. 44

5.3.2 REST API ... 44

5.4 Delete projects .. 45

5.4.1 Service layer API .. 45

5.4.2 REST API ... 45

5.5 List projects ... 46

5.5.1 Service layer API .. 46

5.5.2 REST API ... 46

6 APPENDIX B: Artefact API .. 48

6.1 Create artefacts ... 48

6.1.1 Service layer API .. 48

6.1.2 REST API ... 48

6.2 Retrieve artefacts .. 49

6.2.1 Service layer API .. 49

6.2.2 REST API ... 50

6.3 Update artefacts.. 50

6.3.1 Service layer API .. 50

6.3.2 REST API ... 51

6.4 Delete artefacts ... 51

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 6 of 61

6.4.1 Service layer API .. 51

6.4.2 REST API ... 52

6.5 Find artefacts ... 52

6.5.1 Service layer API .. 52

6.5.2 REST API ... 53

7 APPENDIX C: Category API .. 54

7.1 Create categories .. 54

7.1.1 Service layer API .. 54

7.1.2 REST API ... 54

7.2 Retrieve categories .. 55

7.2.1 Service layer API .. 55

7.2.2 REST API ... 55

7.3 Update categories ... 56

7.3.1 Service layer API .. 56

7.3.2 REST API ... 57

7.4 Delete categories .. 57

7.4.1 Service layer API .. 57

7.4.2 REST API ... 58

8 Appendix D: ARTIST Marketplace Mock-up .. 59

Table of Figures

FIGURE 1: CONCEPTS REALIZED IN THIS PROTOTYPE AS SUBSET OF FIGURE 3 IN D10.2 [1]. 13
FIGURE 2: THE WP10 COMPONENTS REPOSITORY, MARKETPLACE AND REPOSITORY PLUGIN (YELLOW) IN THE

CONTEXT OF THE ARTIST SUITE. ... 16
FIGURE 3: HIGH LEVEL ARCHITECTURE AND COMPONENTS OF THE ARTIST REPOSITORY PROTOTYPE. 18
FIGURE 4: MODEL OF THE CORE REPOSITORY DATA STRUCTURE. .. 19
FIGURE 5: ARCHITECTURE AND CLASSES OF THE ARTIST REPOSITORY SERVER AND API CLIENT. 20
FIGURE 6: AUTHORIZATION SERVICE ARCHITECTURE .. 21
FIGURE 7: AUTHORISATION SERVICE INTERACTIONS ... 22
FIGURE 8: SECURITY DATA MODEL ... 23
FIGURE 9: CODE SNIPPET TO INITIALIZE THE REPOSITORY CLIENT. ... 29
FIGURE 10: CODE SNIPPET TO CREATE AND RETRIEVE PROJECTS. .. 30
FIGURE 11: CODE SNIPPET TO CREATE AND RETRIEVE CATEGORIES. .. 30
FIGURE 12: CODE SNIPPET TO CREATE AN ARTEFACT RECORD AND ATTACH CONTENT TO IT. 30
FIGURE 13: CODE SNIPPET TO RETRIEVE AND QUERY ARTEFACTS. ... 31
FIGURE 14: USAGE EXAMPLE OF THE AUTHORIZATION SERVICE. .. 32
FIGURE 15: CREATING AN ACCESSREQUEST. ... 32

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 7 of 61

FIGURE 16: EXEMPLARY CREATION OF THE SUBJECTATTRIBUTES OBJECT. RESOURCEATTRIBUTES AND

ACTIONATTRIBUTES ARE CREATED ANALOGOUSLY. .. 33
FIGURE 17: WS02 IDENTITY SERVER MANAGEMENT CONSOLE ... 33
FIGURE 18: WSO2 IDENTITY SERVER USER MANAGEMENT GUI .. 34
FIGURE 19: WSO2 IDENTITY SERVER ROLES MANAGEMENT GUI .. 34
FIGURE 20: WSO2 IDENTITY SERVER USER MANAGEMENT GUI ... 35
FIGURE 21: WSO2 IDENTITY SERVER USERS MANAGEMENT GUI ς ASSIGN ROLE 35
FIGURE 22: WSO2 IDENTITY SERVER POLICY ADMINISTRATION CONSOLE .. 36
FIGURE 23: WSO2 IDENTITY SERVER POLICY ADMINISTRATION - NEW POLICY ... 36
FIGURE 24: WSO2 IDENTITY SERVER POLICY ADMINISTRATION - ENABLE POLICY 37
FIGURE 25: CREATION OF A NEW REPOSITORY CONNECTION. .. 37
FIGURE 26: MANAGEMENT OF REPOSITORY CONNECTIONS. ... 38
FIGURE 27: REPOSITORY CONTENT IN THE REPOSITORY BROWSER. .. 38
FIGURE 28: MAIN PAGE OF THE ARTIST MARKETPLACE WITH RECENT DEVELOPMENTS. 59
FIGURE 29: SEARCH PAGE OF THE ARTIST MARKETPLACE. ... 60
FIGURE 30: USERS CAN MANAGE THEIR PUBLISHED ARTEFACTS IN THE MARKETPLACE. 60
FIGURE 31: THE MARKETPLACE TRACKS THE ARTEFACTS USED AND PURCHASED. .. 61

Table of Tables

THIS DOCUMENT CONTAINS NO TABLES

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 8 of 61

Terms and abbreviations

ABAC Attribute Based Access Control

API Application Programming Interface

AS Authorization Service

CDI Contexts and Dependency Injection

EC European Commission

EMF Eclipse Modelling Framework

GUI Graphical User Interface

HTML Hypertext Mark-up Language

IDE Integrated Development Environment

JAR Java ARchive

JCR Java Content Repository

JEE Java Enterprise Edition

JSON JavaScript Object Notation

MDA Model Driven Architecture

MDE Model Driven Engineering

PDP Policy Decision Point

PEP Policy Enforcement Point

RCM Repository Content Model

REST Representational State Transfer

SDK Software Development Kit

UML Unified Modelling Language

URI Unified Resource Identifier

URL Unified Resource Locator

UUID Universally Unique Identifier

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 9 of 61

XACML eXtensible Access Control Mark-up Language

XML eXtensible Mark-up Language

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 10 of 61

Executive Summary

This deliverable describes the prototype of the ARTIST Repository that is bundled with this
document and that provides an infrastructure to manage the potentially reusable artefacts
produced during any migration project accomplished using the ARTIST tools. The goal is to
foster reuse of artefacts inside and between different migration projects. Two tasks dealing
with identifying and managing reusable artefacts have been contributed to the ARTIST
Methodology. The ARTIST Repository is the primary tool supporting these tasks.

Since ARTIST follows an MDE approach, the artefacts most likely managed by the repository
are meta-models, UML profiles, as well as model-to-model and model-to-text transformations.
The focus of the ARTIST repository is to make these more abstract and stable artefacts
ŀǾŀƛƭŀōƭŜ Ǿƛŀ ōǊƻǿǎƛƴƎΣ ǎŜŀǊŎƘΣ ŀ ǇǳōƭƛŎ ƳŀǊƪŜǘǇƭŀŎŜ ŀƴŘ ƛƴǘŜƎǊŀǘƛƻƴ ƛƴǘƻ ǘƘŜ ŘŜǾŜƭƻǇŜǊΩǎ
Eclipse workspace. The repository is less suited to manage model instances or artefacts that
change frequently.

The current version of the prototype supports the publishing and retrieval of artefacts, the
categorization and tagging of artefacts and basic searching capabilities. For artefact storage, a
database based on the Java Content Repository (JCR) standard1 is used. The functionality is
provided to the user in form of a REST based web service and as a Java-based client API that
makes integration of the repository services with other ARTIST tools easy. The prototype
contains an Authorization Service that will provide Attribute Based Access Control and that will
be fully integrated in the next release of the repository. Also included in the deliverable are
previews of the Eclipse client plugin and of the GUI of the ARTIST Marketplace.

The functionality of the ARTIST Repository is organized in a layered architecture. On the server
a service layer that contains the actual functionality is built on top of the data layer. The REST-
based web service layer makes the functionality of the service layer accessible in a standards
based way. The Repository API client uses the REST interface to communicate with the server
and offers the same API to client applications that is provided by the service layer on the
server. The Eclipse Client Plugin will use the Repository API client to integrate the repository
into the Eclipse environment. This approach has the advantage that client applications using
the service API can be used on the server and on the client with only minor changes.
Furthermore multiple integration points are offered to other ARTIST tools: the REST-based web
service API provided by the server, the service API provided by the API client and the
workspace integration that will be provided by the Eclipse Client Plugin.

This deliverable documents starts with an introduction that provides a short motivation for the
ARTIST Repository and gives on overview over the deliverable content. Architecture and
implementation aspects of the delivered prototype are described in Section 2, including
descriptions of the functional and technical content and a roadmap of upcoming releases.
Additionally, the integration of the prototype in the overall ARTIST approach and the
innovative aspects of the prototype are highlighted. In Section 3, the delivered software
package is described starting with the contents of the software package followed by the
installation instructions and a user guide. A conclusion in Section 4 closes the document and
provides an outlook on the next steps. The Appendices A to C describe the Java and REST API
provided by the ARTIST Repository in greater detail and Appendix D provides an early preview
on the ARTIST Marketplace GUI in form of a static GUI mock-up.

1
 https://jcp.org/aboutJava/communityprocess/final/jsr283/index.html

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 11 of 61

The next release of the ARTIST Repository will be an internal release in M24 that will provide
security (authentication and authorization), linear versioning of artefacts, handling of inter
artefact dependencies and relationships with the help of a Repository Content Model (RCM),
and improved search capabilities based on the RCM information. Also the first versions of the
Eclipse Client Plugin and the ARTIST Marketplace will be delivered. The next official release will
be in M30 and will additionally include change notifications, collection of user feedback,
artefact reuse tracking, as well as support for commercial artefacts and updated versions of
the Eclipse plugin and the ARTIST Marketplace.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 12 of 61

1 Introduction

During an ARTIST migration project, a considerable number of artefacts are being produced
and consumed. Some of those artefacts, like descriptions of abstract concepts or generic
transformations, are potentially reusable among different migration projects. Since ARTIST
pursues a model driven approach the most likely candidates for reuse are meta-models and
the transformations that operate on those models.

As stated in D10.2 [1], the purpose of the ARTIST artefact repository is to manage the
potentially reusable artefacts that are being produced and processed by the ARTIST tools
during a modernization project. To this end, it provides the foundations for a reuse
infrastructure based on the following features:

¶ Immutable artefact versions: Released artefacts are immutable. Changes in the
artefact content lead to a new version of the artefact. The old versions remain
unchanged and are still accessible.2

¶ Search by classification, full text or content meta-data allows to find suitable artefacts

¶ Browser based marketplace: Reusable artefacts can be published to the web based
Marketplace to promote their availability for future reuse.

The prototype described in this document implements a server component that provides
services to manage artefacts and their meta-data. It is complemented with a Java based API
client that makes integration of the repository services in other ARTIST tools easy. An overview
over the features provided in upcoming releases is provided in the roadmap in Section 2.1.1.

1.1 About this deliverable

This document is the complement to the ARTIST Repository software prototype delivered in
M18.

1.2 Document structure

This deliverable is structured as follows: After the introduction in this section, the
implementation aspects of the delivered prototype are described in Section 2, first from a
functional point of view and then from the technical point of view. Additionally the integration
of the prototype in the overall ARTIST approach and the innovative aspects of the prototype
are highlighted. In Section 3 the delivered software package is described starting with the
contents of the software package followed by the installation instructions and a user guide. A
conclusion in Section 4 closes the document and provides an outlook on the next steps. The
Appendices A to C describe the Java and REST API provided by the ARTIST Repository in greater
detail and Appendix D provides an early preview on the ARTIST Marketplace GUI.

2
 This feature will be provided together with artefact versioning in the next release due in M24. In the

current prototype artefacts are still mutable.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 13 of 61

2 Implementation

2.1 Functional description

This document describes the first prototype of the ARTIST Repository server component that
provides the repository web service. This first prototype comprises the basic functionality of
the repository: the storage and retrieval of artefacts.

The following functionality is provided (see Figure 1):

¶ Create, view, update and delete projects. Projects are used to organize artefacts
according to different migration projects such as the use cases in ARTIST. The is an
important element for access control as for example use cases can have their own
projects with use case specific access policies. A public project will contain the publicly
available artefacts that are to be promoted by the ARTIST Marketplace. Inside projects
artefacts are organized in packages.

¶ Create, view, update and delete artefact meta-data (artefact record) and artefact
content. An artefact record contains the name, label, description, tags and other meta-
data of the artefact. The artefact content represents the actual artefact to be stored in
the repository. Two types of content (represented by the interface RepoContent) are
supported in the prototype: file content that is stored directly in the repository and
web content that merely stores an URI pointing to the actual content that is located on
an external web server.

¶ Create, retrieve, update and delete categories. Categories are used to logically
organize artefacts. Categories can have sub-categories and thus form a hierarchical
tree structure.

¶ Search and retrieve artefacts by project, package, id, tag or category.

Figure 1: Concepts realized in this prototype as subset of Figure 3 in D10.2 [1].

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 14 of 61

This functionality is available in three forms: as service side service API, as REST based web
service API and as Java Client API that eases integration of the repository services with other
ARTIST tools or other third party applications.

The current release focusses on the functional aspects of the ARTIST Repository. Some cross
cutting aspects such as security / access control could not be integrated into this release.
Although access control is not yet activated the initial preparations (see the Authorization
service described in Section 2.2.4) have been completed and will be activated once
authentication is implemented (see next section).

2.1.1 Roadmap

The next releases of the ARTIST Repository and its components are in M24 (internal release)
and in M30 (deliverable D10.3.2). The following roadmap indicates which features will be
included in these upcoming releases.

Internal release in M24:

¶ Security: Authentication (using OAUTH) and full integration of the Authorization
Service.

¶ Repository Content Model: The RCM stores the relationships between artefacts (as
described in D10.2 [1]). The RCM will be populated with user supplied data
complemented with data extracted from the artefacts.

¶ Versioning: Implementation of linear versioning for artefacts and their meta-data
based on the functionality provided by the JCR layer.

¶ Content based search: Definition and implementation of context based search,
possibly supported by a query language developed for the Orchestration Tool in WP9.

¶ Repository Eclipse Client Plugin

¶ ARTIST Marketplace

Deliverable D10.3.2 in M30:

¶ User notification of artefact changes

¶ Collection of user feedback (comments, ratings)

¶ Functionality to track the (re-)usage of artefacts from the repository (via downloads
and feedback from the clients)

¶ Support for commercial artefacts (if needed)

¶ Updated Repository Eclipse Client Plugin

¶ Updated ARTIST Marketplace

2.1.2 Innovation

Storage of MDA artefacts and especially EMF and UML models has been the focus of a number
of efforts. CDO3, Teneo4 and EMFStore5 [2] handle model storage, versioning and
synchronization between workspace and repository very well while the Morsa prototype [3] is
focussed on the performant storage and retrieval of large EMF models. Since it is not their
ǇǊƛƳŀǊȅ ŦƻŎǳǎ ǘƘŜǎŜ ŀǇǇǊƻŀŎƘŜǎ ŘƻƴΩǘ ǎǳǇǇƻǊǘ ǊŜǳǎŜ ǘƻ ŀ great extent. It is not possible to
attach descriptions and tags to models and to classify them in categories. They are also

3
 http://www.eclipse.org/cdo/

4
 https://wiki.eclipse.org/Teneo

5
 https://eclipse.org/emfstore/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 15 of 61

focussed on model artefacts and can only handle transformation artefacts if they have been
transformed to a model form.

An established approach that supports reuse well in the Java world is the automated
dependency management of tools like Apache Maven6 or Ivy7. These tools manage software
components that are described by meta-data. The dependency information that is part of this
meta-data allows the transitive import of software components into software projects thus
effectively enabling their reuse. However, this approach is targeted towards software
components and does not take the specific kinds of dependencies into account that typically
occur between MDA artefacts.

The innovation of the ARTIST Repository is to provide a reuse oriented repository for MDA and
migration artefacts with focus on but not limited to model artefacts. It will analyse the
dependencies that exist e.g. between an UML model and the UML profiles and UML packages
that are referenced by it, record this information in a so called Megamodel [4] and use this
information for querying and dependency resolution. The current prototype is a first step in
this direction by providing artefact management, description of artefacts with meta-data like
descriptions, tags and categories and basic searching capabilities. The next iterations will focus
on the more innovative parts described above.

2.1.3 Fitting into overall ARTIST solution

The ARTIST repository stores the artefacts produced during migration projects that use the
ARTIST tool suite. These artefacts will mainly consist of MDE work products like meta-models,
UML profiles as well as model-to-text- and model-to-model-transformations. It is not restricted
to this kind of artefacts though and can also handle other documents produced by ARTIST tools
like the goal model or the report of the Maturity Assessment Tool (MAT).

The repository organizes the artefacts with a categorization system and with tagging. The next
release will also feature a special Repository Content Model that captures the artefact types
and the relationships between the different artefacts in the repository (see Section 3.1.4 in
D10.2 [1]). This will open up new possibilities to navigate the repository content and to provide
context based search.

The architecture of the ARTIST Repository allows other tools to use the repository functionality
on three levels (see also Sections 2.2.1 and 2.2.3):

¶ Service layer: On the lowest level the repository service layer on the server can be
used. This approach will most likely be used to build the ARTIST Marketplace.

¶ Web service layer: External tools can use most of the functionalities provided by the
service layer via the REST-based web service layer. This option is appropriate for non-
Eclipse-based tools and if a tool needs direct access to the artefacts in the repository.
This approach leads to tighter coupling compared to the third option.

¶ Eclipse Client Plugin and Eclipse workspace: The Repository Client Plugin for Eclipse
integrates the ARTIST Repository with the Eclipse workspace. Artefacts can be
imported into the workspace and exported to the repository. This is the preferred way
to use the ARTIST Repository since other Eclipse-based ARTIST tools will not have a
direct dependency on the repository but still can work with the repository artefacts via
the Eclipse workspace.

6
 http://maven.apache.org/

7
 http://ant.apache.org/ivy/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 16 of 61

By using these integration options other ARTIST tools can use the repository to store and
manage the artefacts they need or produce. A number of possible integration points have
already been described in Section 2.3 of D10.2 [1]:

¶ Integration with the benchmarking software repository ŘŜǎŎǊƛōŜŘ ƛƴ 5тΦнΦм άCloud
services modelling and performance analysis frameworkέ [5]

¶ Integration with the ARTIST methodology and the Methodology Process Tool (MPT)
described in D6.3.1 [6]

In addition all the MDE-based ARTIST tools like the Model Understanding Toolbox, the
Cloudification Modelling Tool, the Deployment Tool or the Orchestration Tool can benefit from
the repository via the Eclipse workspace. The Orchestration Tool is a special case since it
automates MDE-processes using a domain specific language and thus needs more direct
interaction with the repository. In coordination with WP9 interactions with the repository
artefacts will be integrated into the domain specific language and the associated runtime.

Other possible integration points with other non-MDE ARTIST tools include:

¶ Storage of results of profiling runs

¶ Storage of performance stereotypes

¶ Storage of results of feasibility assessments

Figure 2: The WP10 components Repository, Marketplace and Repository Plugin (yellow) in the context
of the ARTIST suite.

The ARTIST Repository is realized as a server based web service as depicted in the lower right
corner of the overall ARTIST architecture shown in Figure 2. In the next releases, the ARTIST

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 17 of 61

Repository Plugin and the ARTIST Marketplace will build on the services provided by this
prototype. Both are shown in yellow in Figure 2 and are previewed in this deliverable (see
Section 3.3.4 and Appendix D).

The ARTIST Repository is the central tool for the tasks of the reuse oriented part of the ARTIST
Methodology as described in D6.2.2 άARTIST Methodologyέ ŘǳŜ ƛƴ aнп:

¶ Task REUSEID - Identify Reusable Artefacts

¶ Task REUSEPUB - Publish and Maintain Reusable Artefacts

2.2 Technical description

This section describes the architecture, data model and the different components of the
ARTIST Repository prototype. A detailed description of the Java and REST web service API
provided by the repository services to manage artefacts, projects and categories is provided in
the Appendices A to C.

2.2.1 Prototype architecture

The repository prototype consists of two main components: the ARTIST Repository server and
the Repository API client. In addition to these components, an external identity server is being
used to provide user management and handle XACML-ōŀǎŜŘ ŀǳǘƘƻǊƛȊŀǘƛƻƴ Ǿƛŀ ǘƘŜ ǊŜǇƻǎƛǘƻǊȅΩǎ
Authorization Service (see Section 2.2.4 for details). The prototype uses the Open Source
WSO2 Identity Server8 for this purpose. The components and their interactions are displayed
in Figure 3.

The main component of the ARTIST Repository is the server component. It uses a layered
architecture to provide its services:

¶ The data layer is provided by the JBoss Modeshape9 JCR database that provides a
standard compliant implementation of the Java Content Repository (JCR) 2.0
specification. On top of the JCR database the Jcrom10 framework provides data
mapping capabilities to convert between domain objects and JCR data structures.

¶ The repository service layer uses the data layer to implement the business logic and
offers the service API that can be used by applications to manage artefacts.

¶ All calls to the service layer are intercepted by an Authorization Interceptor that uses
the Authorization Service to determine via the access policies managed in the Identity
Server, whether the user is allowed to perform the requested action. Since in the
current prototype priority has been given to providing the core repository
functionality, an appropriate user authentication could not be included. Therefore the
Authorization Interceptor is disabled in the current prototype.

¶ The RESTful web service layer provides a REST based web service interface to the
functionalities of the repository service layer. The data representing the domain
objects described in the next section is transferred in XML or JSON format.

The architecture of the server is described in more detail in Section 2.2.3.

8
 http://wso2.com/products/identity-server

9
 http://modeshape.jboss.org

10
 https://code.google.com/p/jcrom

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 18 of 61

Figure 3: High level architecture and components of the ARTIST Repository prototype.

The ARTIST Repository services offered via the REST based web service interface are
complemented with a Java API client that makes it more convenient for other ARTIST tools or
third party applications to work with the repository API. The Java API client implements the
same service interfaces that are offered by the Repository Service API on the server thus hiding
the web service communication from the API consumer.

2.2.2 Data model

The data model that forms the basis of the repository services consists of a set of domain
classes that are a subset of the data model described in section 3.3.1 of deliverable D10.2 [1].
The domain classes define the structure and content of the repository as shown in Figure 4.
The repository server contains an arbitrary number of collections or projects represented by
the RepoProject class. In these projects the artefacts (RepoArtefact) are organized in
packages (RepoPackage).

Artefacts are identified by an ArtefactId which is a composite of the package, artefact and
version name. Artefacts can be assigned to categories (RepoCategory). These categories are
organized in a hierarchical tree structure. The RepoArtefact class represents the artefact
meta-data. The actual content is represented by the RepoContent interface which allows
storing different kinds of content. The interface has two implementations: FileContent
stores the artefact content in the database and WebContent merely stores an URL reference
to the external artefact location.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 19 of 61

Figure 4: Model of the core repository data structure.

Projects, packages, artefacts and categories share some common attributes:

¶ Name: The name of the entity. For projects and packages the name is equivalent to
the id. The following rules apply for valid names:

o tǊƻƧŜŎǘ ƴŀƳŜΥ !ƭƭƻǿŜŘ ŀǊŜ ŀƭǇƘŀƴǳƳŜǊƛŎ ŎƘŀǊŀŎǘŜǊǎΣ ά-άΣ άψέ ŀƴŘ άΦέ
o Package name: Allowed are alphanumeric chaǊŀŎǘŜǊǎΣ ά-άΣ άψέ ŀƴŘ άΦέ
o /ŀǘŜƎƻǊȅ ƴŀƳŜΥ !ƭƭƻǿŜŘ ŀǊŜ ŀƭǇƘŀƴǳƳŜǊƛŎ ŎƘŀǊŀŎǘŜǊǎΣ ά-άΣ άψέΦ
o !ǊǘŜŦŀŎǘ ƴŀƳŜΥ !ƭƭƻǿŜŘ ŀǊŜ ŀƭǇƘŀƴǳƳŜǊƛŎ ŎƘŀǊŀŎǘŜǊǎΣ ά-άΣ άψέ ŀƴŘ άΦέ

 class Core

RepositoryServ er
RepoProject

- id :String

- name :String

- label :String

- description :String

RepoPackage

- id :String

- name :String

- label :String

- description :String

RepoArtefact

- id :String

- uuid :String

- name :String

- label :String

- description :String

- namespaceURI :String

- tags :List<String>

ArtefactId

- packageId :String

- artefactId :String

- versionId :String

çinterfaceè

RepoContent

+ getContent() :InputStream

FileContent

- fi lename :String

- mimeType :String

- encoding :String

- lastModified :Calender

WebContent

- url :String

RepoCategory

- id :String

- uuid :String

- name :String

- label :String

- description :String

- parent :RepoCategory

+artefactId

1 has

+artefacts 0..*

contains

+package

1

+packages 0..*
contains

+project 1

+projects

1..*contains1

*

categories

*

categories

*

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 20 of 61

¶ Id: The id uniquely identifies the entity. Projects and packages have simple ids whereas
the id of artefacts and categories consists of a number of segments. The following
formatting rules apply to the different ids:

o ProjectId and PackageId: Same as the name
o CategoryId: Names of the category path from the root category to the

addressed category joined tƻƎŜǘƘŜǊ ōȅ ŘƻǘǎΣ ŜΦƎΦ ŎŀǘŜƎƻǊȅ άŀΦōΦŎέ ƛǎ ŀ ǎǳō-
ŎŀǘŜƎƻǊȅ ƻŦ ŎŀǘŜƎƻǊȅ άŀΦōέΦ ¢ƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ŎŀǘŜƎƻǊȅ ǿƛǘƘ ƛŘ άŀΦōΦŎέ ƛǎ άŎέΦ

o !ǊǘŜŦŀŎǘLŘΥ tŀŎƪŀƎŜ ƴŀƳŜΣ ŀǊǘŜŦŀŎǘ ƴŀƳŜ ŀƴŘ ǾŜǊǎƛƻƴ ƧƻƛƴŜŘ ǘƻƎŜǘƘŜǊ ōȅ ŀ άΗέ
ŎƘŀǊŀŎǘŜǊΦ {ƛƴŎŜ ǾŜǊǎƛƻƴƛƴƎ ƛǎ ƴƻǘ ȅŜǘ ǎǳǇǇƻǊǘŜŘΣ άI9!5έ ƛǎ ǳǎŜŘ ŀǎ ŘŜŦŀǳƭǘ
version name in this prototype. Example id:
eu.artist.uc.dews!gwt_model!HEAD

¶ Uuid: The UUID (Universally Unique Identifier) provides an alternative way to identify
artefacts and categories. It is used internally and might be removed in future releases.

¶ Label: A human readable name of the entity used for display purposes in the GUI.

¶ Description: A human readable longer description of the entity used for display
purposes in the GUI.

In addition to these shared attributes the artefacts can be described with a namespace URI
that is primarily useful for modelling artefacts and by a set of tags.

Figure 5: Architecture and classes of the ARTIST Repository server and API client.

2.2.3 Repository service and client

The architecture of the repository prototype is vertically organized in layers as described in
Section 2.2.1. Horizontally this layered architecture is replicated for the three main services
(ProjectService , ArtefactService and Category Service) offered by the repository
prototype as shown in Figure 5.

The data storage is accessed exclusively by the data access layer that provides data access
objects (DAOs, e.g. ProjectDAO) to the service layer. The service layer (e.g.
ProjectServiceImpl) implements a service interface (e.g. ProjectService) that defines
the functionality provided by the service and contains the business logic. The calls coming to
the service API directly or via the web service layer are captured by the
AuthorizationInterceptor which determines with the help of the
AuthorizationService if the action is permitted or not. The classes in the REST web

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 21 of 61

service layer (e.g. ProjectResource Impl) implement a web resource interface (e.g.
ProjectResource) and encapsulate all the protocol specific code of the REST API layer.

The JAXB implementation provided by the Apache CXF web service framework11 serializes the
ŘƻƳŀƛƴ ƻōƧŜŎǘǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ƭŀǎǘ ǎŜŎǘƛƻƴ ǘƻ ·a[ƻǊ W{hb ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ άŀŎŎŜǇǘέ ƘŜŀŘŜǊ
of the request. On the client side this process is reversed. The CXF framework provides a
dynamic web service proxy client that allows the client class (e.g. Project Manager) to access
the web service via the same interface that was used on the server side (e.g.
ProjectResource) and that reconstructs the domain objects from the serialized form
received from the web service. The Manager classes (e.g. Project Manager) in the Client
Service API layer implement the same service interfaces (e.g. ProjectService) as the service
classes on the server thus exposing the same behaviour to a potential client application than
the service on the server.

2.2.4 Authorization service

The Authorization Service (AS) component of the ARTIST Repository provides access control
functionalities to ensure that only authorized users have access to restricted resources. It acts
as an intermediary between the repository and the XACML engine (provided by the external
identity server) providing a Java-based API and an EMF-based data model to more
conveniently use the external XACML-based authorization service.

As described in D10.2 [1], the ABAC model [7] has been chosen as our access control approach
according to the XACML reference specifications [8]. In this model authorization decisions are
based on a set of rules (i.e. the access control policies) defining the actions (e.g. create, read
etc.) that a subject (e.g. a user) can performs upon a resource (e.g. the artefact) in some
environment conditions.

Following the XACML architecture described in [1], the AS implements a Policy Enforcement
Point (PEP) interacting with the Policy Decision Point (PDP) of an external XACML engine
(provided here by the WSO2 Identity Server) in order to allow or deny access to the
ǊŜǇƻǎƛǘƻǊȅΩǎ ǊŜǎƻǳǊŎŜǎΦ

The architecture of the AS component is depicted in Figure 6.

Figure 6: Authorization Service architecture

11

 http://cxf.apache.org/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 22 of 61

2.2.4.1 Service interface (API)

In particular, the interface exposed by the AS component implements the following API:

AccessResponse authorize(AccessRequest request)

The provided API extracts the information contained in the access request in order to generate
the corresponding XACML request and forwards it to the XACML Engine. Then, then result of
the authorization decision is returned (see Figure 7).

Figure 7: Authorisation Service interactions

The access request and authorization decision expected and provided by the AS are
represented by EMF data structures that are described in detail in the following section

2.2.4.2 Security Data Model

The security data model describes the structure of the information concerning security aspects
handled in the ARTIST Repository prototype. In particular, these security entities have been
defined in EMF to encode information related to the access control requests and responses.
Since the authorization decision requires the interaction with a XACML engine, their content is
structured consistently with the XACML language specifications.

The first version of the security data model is depicted in Figure 8 using a UML12 class diagram.

12

 http://www.uml.org/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 23 of 61

Figure 8: Security Data Model

The enumerations in Figure 8 provide the keys the access the different attributes. Also the
methods to access the private instance variables have been omitted for brevity. The entities
and relationships of the security data model are described below.

An AccessRequest represents a request for an authorization decision. The access request
contains information regarding the subject of the request, the resource that the subject wants
to access, the action it wants to perform on the resource and the environment context in
which access is requested. An example of a concrete access request in the context of the
ARTIST Repository is presented in the user guide in Section 3.3.2.

An ElementAttributes represents a set of access attributes (see AccessAttribute
entity).

A SubjectAttributes represents a set of access attributes related to the subject involved in
the access request.

A ResourceAttributes represents a set of access attributes related to the resource
involved in the access request.

An ActionAttributes represents a set of access attributes related to the action involved in
the access request.

An EnvironmentAttribute represents a set of access attributes related to the context of
the access request.

An AccessAttribute represents a characteristic of the subject, the resource, the action or
of the environment. This entity is characterised by an identifier (i.e. the identifier of the
attribute that can be one defined by the XACML specifications or defined by your own), a data
type of the attribute and its value.

An AccessResponse represents the result of the access request evaluation (i.e. one of the
values defined by the EvaluationResult entity).

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 24 of 61

An EvaluationResult represents the possible results of the access request evaluation (i.e.
Permit, Deny, Indeterminate, and NotApplicable).

A DataTypeIdentifier represents the set of access attribute data types defined in the
XACML specifications.

A SubjectAttributeIdentifier represents the set of access attribute identifiers related
to a subject, defined in the XACML specifications.

A ResourceAttributeIdentifier represents the set of access attribute identifiers related
to a resource, defined in the XACML specifications.

An ActionAttributeIdentifier represents the set of access attribute identifiers related
to an action defined in the XACML specifications.

An EnvironmentAttributeIdentifier represents the set of access attribute identifiers
related to an environment, defined in the XACML specifications.

An example how this generic data structure is used and populated with repository specific
information is provided in Section 3.3.2.

2.2.4.3 Integration of the Authorization Service

The next release of the ARTIST Repository web service will provide user authentication and
authorization based on the AS. Security is not included in the current prototype since priority
was given to providing the core repository functionality. This section describes the integration
of the planed security features on a conceptual level.

The WSO2 Identity Server13 will be used to manage the repository users, act as identity
provider for user authentication and as Policy Decision Point (PDP) for authorization. Different
methods of authentication (like JAAS or OAUTH) are currently evaluated for the repository
services. Successful authentication will make the authenticated user and his/her roles available
to the repository services via security principals.

Authorization is performed with help of an AuthorizationInterceptor and the AS
described in this section. The interceptor is activated by the CDI framework whenever a
secured method in the service layer is about to be called. Information about the called method
is passed to the interceptor. Now the interceptor has to construct an authorization request
that specifies a subject that performs an action on a resource in a given environment. The
interceptor uses the name of the service class and the called method to determine the action
attribute. The subject attribute is constructed from the security principals and typically
contains the unique user id. The resource attribute can be computed from the parameters of
the called method and contains the type and id of the addressed domain object.

The AS is then invoked with the authorization request and returns an AccessResponse that
contains the access decision of the PDP. The interceptor will then throw an exception when
access has been denied. Otherwise the interceptor triggers the execution of the service
method. An example of this process is provided in Section 3.3.2.

2.2.5 Technical specifications

The prototype is realized in the programming language Java version 1.7. It uses several Java
standards such as JAX-RS for REST based web services, JCR for data storage, CDI for

13

 http://wso2.com/products/identity-server/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 25 of 61

dependency injection and the services of a JEE compliant web application server. Apache
Maven14 is used as build tool.

The following technologies are used in this prototype:

Application server: Apache TomEE Plus 1.6.015 which includes the following Open Source
technologies (Apache license):

¶ CDI - Apache OpenWebBeans

¶ EJB - Apache OpenEJB

¶ Servlet - Apache Tomcat

¶ JAX-RS - Apache CXF

For storage the JCR compliant solution JBoss Modeshape 3.7.116 that supports the JCR 2.0
specification is used (currently LGPL, Apache license in the next version). It uses a H2
database17 in the background. To map data objects to the JCR storage the mapping framework
Jcrom18 is used (Apache license). In addition the prototype uses some convenience methods
for working with collections and null values provided by the Google Guava19 library (Apache
license).

For testing JUnit20 is used.

The Authentication Service has also been implemented using the Java language and requires
the Java JRE 1.7.

Regarding the XACML engine implementation, the one provided by the WSO2 Identity Server
(WSO2IS)21 has been chosen. WSO2IS is an open source and high performance identity and
entitlement management server playing the role of Policy Administration Point (PAP), Policy
Decision Point (PDP) and Policy Information Point (PIP). In particular, the WSO2IS exposes its
PDP functionalities in a loosely coupling manner by use of web services. Any Policy
Enforcement Point (PEP) can interact with the WSO2IS PDP using its web service client called
EntitlementService . Therefore, the AS component provides its authorizations
functionalities interacting with the PDP client of the WSO2IS.

14

 http://maven.apache.org/
15

 http://tomee.apache.org/apache-tomee.html
16

 http://www.jboss.org/modeshape
17

 http://www.h2database.com/html/main.html
18

 https://code.google.com/p/jcrom/
19

 http://code.google.com/p/guava-libraries/
20

 http://junit.org/
21

 http://wso2.com/products/identity-server/

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 26 of 61

3 Delivery and us age

3.1 Package information

The prototype delivered in this deliverable consists of the following components contained in
sub-folders of main directory:

¶ Repository-Client: First version of the ARTIST web service client that provides a Java
API to tools that want to use the repository. The folder also contains a small demo
application to illustrate the usage of the API.

¶ Repository-Server: First version of the ARTIST Repository server that provides the
repository services via a REST based web service interface. The folder includes the
runtime of the repository service deployed in the Apache TomEE application server.

¶ Repository-API-JavaDoc: Generated documentation of the Repository API.

¶ AuthorizationService: Prototype of the Authorization service that will be used to secure
the ARTIST Repository.

¶ Repository-Source-Code: Contains the source code of the submitted components.

¶ Previews: Contains a preliminary preview of the ARTIST Repository Eclipse Client and a
static mock-up of the ARTIST Marketplace.

Installation and usage of the components are described in the following sections and in the
README files in the respective directories.

3.1.1 Repository server

The ARTIST Repository Server prototype is delivered in two forms:

¶ Web application archive repo.server.war: This WAR file contains the repository web
service and all its direct dependencies. Since the JCR database is not deployed in the
web application, this WAR file cannot simply be deployed in any application server.
Therefore the second option is provided.

¶ Server runtime with installed application and JCR database: the folder apache-tomee-
runtime contains a complete instance of the Apache TomEE application server
including the Modeshape JCR database and the ARTIST Repository web service. The
server will run on port 8081.

3.1.2 Repository client

The repository client that other applications can use to access the Repository services via a
Java interface is delivered in the repo.client-1.0.0.jar file. The required dependencies are
provided in the lib folder.

The client comes with a short demo program that indicates the usage of the repository service
and demonstrates the following actions:

¶ create a project

¶ create several categories

¶ create an artefact with content

¶ retrieve the artefact record and content

¶ create additional artefacts

¶ search artefacts by tags and categories

The demo requires a running Repository server on port 8081. It is started via the file
runDemo.bat. The folder demo_input contains a file that is being published to the repository.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 27 of 61

3.1.3 Authorization service

 The structure of the AS software package is described below:

\ ---AuthorizationService_v1.0
 +---doc <directory>
 +---lib <directory>
 +---resources <directory>
 | +---config.properties <file>
 | +---wso2carbon.jks <file>
 +---eu.artist.repository.security.authorizationservice_v1.0.jar <file>

The doc directory contains the javadoc documentation. The lib directory contains the set of
libraries required to use the AS. The resources directory contains configuration files. Finally,
the eu.artist.repository.security.authorizationservice_v1.0 jar file is the AS jar library.

3.1.4 Source code

The folder Repository-Source-Code contains the source code of the ARTIST Repository
components. It is structured as a hierarchical set of Apache Maven projects and has the
following folder structure which follows the Apache Maven convention:

\ ---Repository
 +---AuthorizationService_v1.0
 | +---doc
 | +---java
 | | \ ---test
 | +---lib
 | +---policy
 | \ ---resources
 +---repo.client
 | \ ---src
 | +---main
 | | \ ---java
 | \ ---test
 | +---java
 | \ ---resources
 +---repo.common
 | \ ---src
 | +---main
 | | +---java
 | | \ ---resources
 | \ ---test
 | +---java
 | \ ---resources
 +---repo.eclipse.client
 | +---icons
 | +---META-INF
 | \ ---src
 \ ---repo.server
 +---local-maven-repo
 \ ---src

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 28 of 61

 +---main
 | +---java
 | +---resources
 | | +---META-INF
 | | \ ---WEB-INF
 | +---tomee
 | | +---conf
 | | \ ---lib
 | \ ---webapp
 | \ ---WEB-INF
 \ ---test
 +---java
 \ ---resources
 \ ---META-INF

3.1.5 Previews

In addition to the software actual part of the deliverable two previews are provided:

¶ The Marketplace-Mockup directory contains a static HTML prototype of the ARTIST
Marketplace

¶ The Repository-Eclipse-Client-Preview directory contains the current in-progress
version of the Eclipse client that can be seen as an early GUI prototype.

3.2 Installation instructions

3.2.1 Repository server

To run the provided all-in-one application server, go to the folder <ROOT>/Repository -
Server \ apache- tomee- runtime \ bin and execute the startup.bat or startup.sh
script. The server will start on port 8081. The folder <ROOT>/Repository -
Server \ apache- tomee- runtime can be copied to a different location, if this is desired.

To build and run the server from source, the following prerequisites are required on the
machine:

¶ Java 7 SDK has to be installed

¶ Maven 3 Ƙŀǎ ǘƻ ōŜ ƛƴǎǘŀƭƭŜŘ ŀƴŘ ǘƘŜ άƳǾƴέ ŎƻƳƳŀƴŘ Ƙŀǎ ǘƻ ōŜ ƻƴ ǘƘŜ t!¢IΦ

To build the system, go to the folder <ROOT>/Repository - Source - Code and issue the
command

 mvn clean install

This will download all build time dependencies, build the projects and publish all Maven
artefacts to the local Maven repository. In order to run the server, issue:

 cd Repository/repo.server

 mvn tomee:run

There two commands will download the Apache TomEE application server, download and
install the Modeshape JCR database, configure and start the server and deploy the Repository
services to the server instance.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 29 of 61

The test suite that comes with the server can be run by executing the following command in
the same folder:

mvn test

3.2.2 Repository client

To use the Repository client in an application, the JAR file repo.client-1.0.0.jar and the
dependencies contained in the lib directory have to be on the class path of the application.
Both JAR file and dependencies can be found in the Repository-Client folder.

3.2.3 Authorization service

To install and use the Authorization Service (AS) these instructions must be followed:

¶ Add to the application classpath the AS jar library along with all the jar files contained
in the άlibέ directory of the AS software package (see section 3.1.3).

¶ ¢ƘŜ άǊŜǎƻǳǊŎŜǎέ ŘƛǊŜŎǘƻǊȅ ƻŦ ǘƘŜ !{ ǎƻŦǘǿŀǊŜ ǇŀŎƪŀƎŜ Ƴǳǎǘ ōŜ ŎƻǇƛŜŘ ƛƴ ǘƘŜ ǿƻǊƪing
ŘƛǊŜŎǘƻǊȅ ƻŦ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΦ ¢ƘŜ άŎƻƴŦƛƎΦǇǊƻǇŜǊǘƛŜǎέ ŦƛƭŜ Ŏŀƴ ōŜ ŜŘƛǘŜŘΦ

¶ Download the WSO2 Identity Server distribution and run the server before using the
AS API described in Section 2.2.4.1 and Section 3.3.2.

3.3 User Manual

3.3.1 Repository API

The ARTIST repository client provides the interface defined in ProjectService ,
ArtefactService and CategoryService to client applications of the repository services.
These interfaces and the underlying REST based web service calls defined by
ProjectResource , ArtefactResource , and CategoryResource are described in detail
in the Appendices A to C.

In order to show the basic usage of the provided API in practice, a demo application is
provided with the repository client library in the folder Repository-Client. The folder contains
the file Demo.java that shows how to deal with projects, artefacts and categories. The
following excerpts highlight different aspects of the API.

Figure 9: Code snippet to initialize the Repository client.

When the Repository API is used via the Repository client, the first step is to set up the
ŎƻƴƴŜŎǘƛƻƴ ƛƴŦƻǊƳŀǘƛƻƴ ƛƴŎƭǳŘƛƴƎ ǘƘŜ ǎŜǊǾƛŎŜΩǎ ōŀǎŜ ¦w[ŀƴŘ ǘƘŜ ǳǎŜǊ ŎǊŜŘŜƴǘƛŀƭǎΦ Figure 9
demonstrates this step. Once the client is initialized, a set of managers provide the
functionality of the different aspects of the API (artefacts, projects and categories).

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 30 of 61

Figure 10: Code snippet to create and retrieve Projects.

Figure 10 shows how to create a project and get the list of all projects in the repository.
Projects are described by a label and a description and are identified by a unique
ProjectName , which can contain alphanumeric characterǎΣ άΦέΣ ά-ά, ŀƴŘ άψέΦ

Figure 11: Code snippet to create and retrieve categories.

Categories form a hierarchical tree structure. A category can only be created, if the parent
category already exists (Figure 11). The id of a category, represented by the CategoryName
class, is composed of the names of all categories on the path from the root category to the
category in questions. The id works like a file path with dots instead of slashes to separate the
path segments. Like projects, categories are described by labels and longer descriptions.

Figure 12: Code snippet to create an artefact record and attach content to it.

Artefact records that contain the artefact description and meta-data are created using a
Builder that enables to set the different properties of the artefact with a fluid interface (Figure
12). In addition to a label and description, artefacts can be associated to categories and can be
assigned a set of tags. An artefact is identified by a package name, an artefact name and (in
later releases) a version name. The artefact id is constructed by concatenating these three
ǎŜƎƳŜƴǘǎ ǳǎƛƴƎ άΗέ ŀǎ ǎŜǇŀǊŀǘƻǊ όάŜǳΦŀǊǘƛǎǘΦǳŎΦŘŜǿǎΗǇǊƛŎƛƴƎψǇǊƻŦƛƭŜΗI9!5έ Ŧƻr the artefact in
Figure 12). The actual content of the artefact is provided through a FileContent object as

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 31 of 61

shown in Figure 12. Since artefacts are organised in projects, a project has to be provided
when creating an artefact.

Figure 13: Code snippet to retrieve and query artefacts.

Once a number of artefacts have been created, they can be retrieved and searched in various
ways. Figure 13 shows how to retrieve an artefact by its id and how to search artefacts by
category or tag.

In addition to the API description in Appendix A to C, further information on the API and its
usage can be obtained in the generated JavaDoc documentation (see to Repository-API-
JavaDoc folder) and in the test cases that can be found in the Repository-Source-Code folder
ǳƴŘŜǊ ǘƘŜ ǇŀǘƘ άRepository\ repo.server\src\ test\ javaέΦ

3.3.2 Authorization Service API

The Authorization Service provides an API client to access the XACML-based authorization
service of the identity server in a convenient way. It provides essentially one method that
sends an authorization request to the server and receives the resulting access decision. The
service can be used as indicated in the code shown in Figure 14.

First an instance of the AuthorizationService is retrieved. Then the request to the
authorization service is constructed by populating an EMF-based data structure. The request
contains four information items:

¶ Subject: The user calling the service. In the context of the repository this information
can be obtained by getting the user Principal from the HTTP request or by querying
the security system of the TomEE application server.

¶ Action: The action specifies the operation to be performed. The
AuthorizationInterceptor is always invoked before a secured operation is
executed. It can determine the names of the service class and the invoked method and
ǳǎŜ ǘƘƛǎ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ŎƻƴǎǘǊǳŎǘ ŀ ǎǘǊƛƴƎ όƭƛƪŜ ŜΦƎΦ ά!ǊǘŜŦŀŎǘ{ŜǊǾƛŎŜΦǳǇŘŀǘŜέύ ǘƘŀǘ
represents the operation.

¶ Resource: The AuthorizationInterceptor can also access the parameters of the
secured method and get the type and id of the domain object targeted by the action.
Using this information it can construct a string like e.g.
άŀǊǘŜŦŀŎǘΥŜǳΦŀǊǘƛǎǘΦŘŜǿǎΗǘŜǎǘψƳƻŘŜƭΗмΦлΦлέ ǘƘŀǘ Ŏƻƴǘŀƛƴǎ ǘƘŜ ǘȅǇŜ ŀƴŘ ƛŘ ƻŦ ǘƘŜ
resource.

¶ Environment: The environment can describe the context of the method execution.
Currently this information is not used.

Based on the request the service determines the access decision as shown in Figure 14 that
can then be acted upon.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 32 of 61

Figure 14: Usage example of the Authorization Service.

The assembly of the AccessRequest is shown in Figure 15 and Figure 16. The two figures
show how the EMF data structures are created and populated with the request data.

Figure 15: Creating an AccessRequest .

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 33 of 61

Figure 16: Exemplary creation of the SubjectAttributes object. ResourceAttributes and
ActionAttributes are created analogously.

3.3.3 User and security management

The administrator of the ARTIST Repository can manage the users of the repository and their
authorizations using the Management Console provided by the WSO2 identity Server.

Once the server has started the management console can be accesses typing its URL (i.e.
<identity server hostname>:9443/carbon) in a Web browser. The main page of the
management console is depicted in Figure 17. The administrator must provide its
authentication credential to use the console.

Figure 17: WS02 Identity Server Management Console

3.3.3.1 User management

The administrator can manage the user of the system tƘǊƻǳƎƘ ǘƘŜ ά¦ǎŜǊ ŀƴŘ wƻƭŜǎέ
management GUI (see Figure 18ύΦ Lƴ ǇŀǊǘƛŎǳƭŀǊΣ ǘƘŜ άwƻƭŜǎέ ǘŀō ŀƭƭƻǿǎ ǘƘŜ ŀŘƳƛƴƛǎǘǊŀǘƻǊ ǘƻ
define roles that, in our context, represent a collection of users (i.e. groups) for which access
control restrictions (i.e. access control policies) can be defined.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 34 of 61

Figure 18: WSO2 Identity Server User management GUI

Figure 19 shows an example of roles definitions:

¶ the public role: represents the collections of users that are authorized to make only
read requests on the repositoryΩǎ ǊŜǎƻǳǊŎŜǎ;

¶ the ARTISTProject role: represents the collections of users that are enabled to make
requests such as create project, update artefacts etc. on ǘƘŜ ǊŜǇƻǎƛǘƻǊȅΩǎ ǊŜǎƻǳǊŎŜǎ.

Figure 19: WSO2 Identity Server Roles Management GUI

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 35 of 61

Figure 20 and Figure 21 depict an example of user definition and user-role assignment. In
particular, the example shows that the user ά.ƻōέ is defined and it is assigned to the role
άǇǳōƭƛŎέΦ

Figure 20: WSO2 Identity Server User Management GUI

Figure 21: WSO2 Identity Server Users Management GUI ς Assign Role

3.3.3.2 Security management

The administrator of the ARTIST Repository can manage the access control policies using the
άtƻƭƛŎȅ !ŘƳƛƴƛǎǘǊŀǘƛƻƴέ ŎƻƴǎƻƭŜ ŀǎ ƛƭƭǳǎǘǊŀǘŜŘ ƛƴ Figure 22. In this console id possible to view,
edit, or publish the policies into the PDP. Moreover, new policies can be defined.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 36 of 61

Figure 22: WSO2 Identity Server Policy Administration Console

Figure 23 provides an example of new policy definition. In particular, the example defines a
ǇƻƭƛŎȅ ŦƻǊ ǿƘƛŎƘ ǘƘŜ ǳǎŜǊǎ ōŜƭƻƴƎƛƴƎ ǘƻ ǘƘŜ άǇǳōƭƛŎέ ǊƻƭŜ ŀǊŜ ŀƭƭƻǿŜŘ ǘƻ άǊŜŀŘέ ǘƘŜ άǇǊƻƧŜŎǘέ
resources.

Figure 23: WSO2 Identity Server Policy Administration - New Policy

Finally, once the XACML policies are published into the PDP, ǘƘǊƻǳƎƘ ǘƘŜ άt5t tƻƭƛŎȅ ±ƛŜǿέ
(Figure 24) is possible to enable or disable them.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 37 of 61

Figure 24: WSO2 Identity Server Policy Administration - Enable policy

3.3.4 Repository Eclipse Client

The ARTIST Repository Eclipse Client preview provides some initial elements of the Repository
Eclipse GUI planned for the next release.

Under Window -> Preferences -> ARTIST Repository new Repository connections can be
configured (see Figure 25 and Figure 26)Φ 5ƛŦŦŜǊŜƴǘ ǊŜǇƻǎƛǘƻǊƛŜǎ ŀǊŜ ǇƻǎǎƛōƭŜΦ 9ŀŎƘ ǊŜǇƻǎƛǘƻǊȅΩǎ
content will be displayed in the Repository Browser.

The Repository Browser shows the content of the configured repositories (see Figure 27).
Currently only statically prepared content can be displayed though. The browser offers
commands to upload and download artefacts from the repositories.

A functional and technical description of the Eclipse plugin will be provided with the first
working version.

Figure 25: Creation of a new Repository connection.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 38 of 61

Figure 26: Management of Repository connections.

Figure 27: Repository content in the Repository Browser.

3.3.5 Marketplace Mock -up

The second preview packaged with this deliverable demonstrates the first ideas for the ARTIST
Marketplace for MDA and migration artefacts. The Mock-up is currently comprised of a set of
static HTML pages. To view the mock-up, go to the Previews/Marketplace-Mockup folder and
open the file index.html in a web browser.

Screenshots of the mock-up can be found in Appendix D.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 39 of 61

3.4 Licensing information

The ARTIST Repository prototype is released under EPL license V1.0.

The Authorization service component of the prototype is released under LGPL license V3.0.

3.5 Download

The source code of the two prototypes is delivered alongside the binary components and this

document as a zip file that has been put on the ARTIST (LiveLink) repository in the

ά5ŜƭƛǾŜǊŀōƭŜǎκaмуέ ŦƻƭŘŜǊΦ

Apache Maven can be downloaded from http://maven.apache.org/download.cgi.

The Java SDK 7 can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html.

The WSO2 Identity Server v4.5.0 can be downloaded at the following link

http://wso2.com/more-downloads/identity-server/.

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 40 of 61

4 Conclusions

This document described the prototype of the ARTIST Repository including the services to
manage artefacts, projects and categories and to retrieve artefacts by id, project, package, tag
or category. An Authorization Service that will be used in the next repository version provides
Attribute Based Access Control. In addition to these software components, previews of the
coming Eclipse client plugin and the ARTIST Marketplace GUI are provided.

The layered architecture of the repository allows external tools (like the other ARTIST tools) to
access the repository functionality on three levels: via the REST-based web service provided by
the server, via the Java-based service API provided by the server and the API client, and via the
Eclipse Client Plugin to be delivered in the next release.

The next steps in the development of the repository towards the internal release in M24 are
(as defined in Section 2.1.1)

¶ Authentication via OAUTH and finishing of the integration of the Authorization Service

¶ Implementation of the Repository Content Model to manage artefact relationships and
extraction of meta-data and dependency information from artefacts

¶ Artefact versioning

¶ Definition and implementation of context based search, possibly supported by a query
language developed for the Orchestration Tool in WP9

¶ Integration into the Eclipse IDE via the Eclipse Client Plugin

¶ First version of the ARTIST Marketplace web application

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 41 of 61

References

[1] hƭƛǾŜǊ {ǘǊŀǳǖΣ {ǘŜŦŀƴƛŀ 5Ω!ƎƻǎǘƛƴƛΣ IǳƎƻ .ǊǳƴŜƭƛǊŜΣ WŀǾƛŜǊ /ŀƴƻǾŀǎΣ .ǊŀƳ tŜƭƭŜƴǎΣ ŀƴŘ
¢ŀǘƛŀƴŀ {ŜƴƪƻǾŀΣ ά!w¢L{¢ wŜǇƻǎƛǘƻǊȅ - Technical and information architectuǊŜΣέ !w¢L{¢
Project, Deliverable D10.2, Sep. 2013.

[2] M. Riebisch, S. Bode, Q.-U.-!Φ CŀǊƻƻǉΣ ŀƴŘ {Φ [ŜƘƴŜǊǘΣ ά¢ƻǿŀǊŘǎ /ƻƳǇǊŜƘŜƴǎƛǾŜ aƻŘŜƭƭƛƴƎ
by Inter-ƳƻŘŜƭ [ƛƴƪǎ ¦ǎƛƴƎ ŀƴ LƴǘŜƎǊŀǘƛƴƎ wŜǇƻǎƛǘƻǊȅΣέ нлммΣ ǇǇΦ нупς291.

[3] J. Espinazo Pagán, J. Sánchez CuadrŀŘƻΣ ŀƴŘ WΦ DŀǊŎƝŀ aƻƭƛƴŀΣ άaƻǊǎŀΥ ! {ŎŀƭŀōƭŜ !ǇǇǊƻŀŎƘ
ŦƻǊ tŜǊǎƛǎǘƛƴƎ ŀƴŘ !ŎŎŜǎǎƛƴƎ [ŀǊƎŜ aƻŘŜƭǎΣέ ƛƴ Model Driven Engineering Languages and
Systems, vol. 6981, J. Whittle, T. Clark, and T. Kühne, Eds. Springer Berlin / Heidelberg,
2011, pp. 77ς92.

[4] J. .ŞȊƛǾƛƴΣ CΦ WƻǳŀǳƭǘΣ ŀƴŘ tΦ ±ŀƭŘǳǊƛŜȊΣ άhƴ ǘƘŜ ƴŜŜŘ ŦƻǊ ƳŜƎŀƳƻŘŜƭǎΣέ ƛƴ Best Practices for
Model-Driven Software Development workshop (Proceedings of the OOPSLA/GPCE 2004),
Vancouver, BC, Canada, 2004.

[5] DΦ DƛŀƳƳŀǘǘŜƻ ŀƴŘ bΦ !Φ DŀƭŀƴǘŜΣ ά!w¢L{¢ /ƭƻǳŘ ǎŜǊvices modelling and performance
ŀƴŀƭȅǎƛǎ ŦǊŀƳŜǿƻǊƪΣέ !w¢L{¢ tǊƻƧŜŎǘΣ 5ŜƭƛǾŜǊŀōƭŜ 5тΦнΦмΣ {ŜǇΦ нлмоΦ

[6] A. Menychtas, L. Orue-Echevarria, J. Alonso, H. Brunelière, J. Cánovas, O. Strauß, J.
DƻǊǊƻƷƻƎƻƛǘƛŀΣ .Φ tŜƭƭŜƴǎΣ ŀƴŘ /Φ {ŀƴǘȊŀǊƛŘƻǳΣ ά!w¢L{¢ aŜǘƘƻŘƻƭƻƎȅ tǊƻŎŜǎǎ CǊŀƳŜǿƻǊƪΣέ
ARTIST Project, Deliverable D6.3.1, Sep. 2013.

[7] ±Φ /Φ IǳΣ 5Φ CŜǊǊŀƛƻƭƻΣ wΦ YǳƘƴΣ !Φ wΦ CǊƛŜŘƳŀƴΣ !Φ WΦ [ŀƴƎΣ ŀƴŘ YΦ {ŎŀǊŦƻƴŜΣ άDǳƛŘŜ ǘƻ
!ǘǘǊƛōǳǘŜ .ŀǎŜŘ !ŎŎŜǎǎ /ƻƴǘǊƻƭ ό!.!/ύ 5ŜŦƛƴƛǘƛƻƴ ŀƴŘ /ƻƴǎƛŘŜǊŀǘƛƻƴǎ ό5ǊŀŦǘύΣέ bL{¢Σ bL{¢
Special Publication 800-162, Apr. 2013.

[8] άh!{L{ Ŝ·ǘŜƴǎƛōƭŜ !ŎŎŜǎǎ /ƻƴǘǊƻƭ aŀǊƪǳǇ [ŀƴƎǳŀƎŜ ό·!/a[ύ ¢/ μ h!{L{Φέ [Online].
Available: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.
[Accessed: 12-Jul-2013].

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 42 of 61

5 APPENDIX A: Project API

Projects in the ARTIST repository represent collections of artefacts that are logically associated
with the same level of visibility. A project can e.g. be used for each use case thus enabling to
restrict visibility of artefacts to one use case if desired. The project API supports reading,
creating, deleting, updating and listing projects. Projects are represented by the
RepoProject domain class.

The service layer API of the Project service is defined in the interface ProjectService . The
REST API is defined in the interface ProjectResource . Both interfaces can be found in the
repo.common project.

!ƭƭƻǿŜŘ ŎƘŀǊŀŎǘŜǊǎ ŦƻǊ ǇǊƻƧŜŎǘ ƴŀƳŜǎ κ L5ǎ ŀǊŜ ŀƭǇƘŀƴǳƳŜǊƛŎ ŎƘŀǊŀŎǘŜǊǎΣ ά-άΣ ŀƴŘ άψέΦ

5.1 Create projects

5.1.1 Service layer API

Signature public RepoProject create(ProjectName proj ectId, String
name, String description);

Description Create a new Project. A project is a collection of artefacts. If the project
with the given id already exists, the given properties are updated in the
existing project.

Arguments ¶ projectId: The id of the project

¶ name: The human readable label of the project

¶ description: The human readable label of the project

Return value The newly created RepoProject instance.

Exceptions None

5.1.2 REST API

Uri api1/projects/{projectId}

e.g.:
api1/projects/test_project?na me=Another+test+project&des
cription=This+is+a+second+test+project

Description Creates a new project. The project id is specified via the resource URI, the
other parameters are provided as query parameters.

Request Method ¶ POST

Parameters ¶ projectId [URI]: The id of the project

¶ name [query]: The human readable label of the project

¶ description [query]: The human readable label of the project

Body Empty

D10.3.1 ς Repository Prototype Version: v1.0, Date: 13/05/2014

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 43 of 61

Request Headers ¶ Accept (optional)

¶ Content-Type

Response The created project record, e.g.:

<project id="t est_project" label="Another test project"
name="test_project">
 <description>
 This is a second test project.
 </description>
 <packages />
</project>

Response Headers ¶ Location

Response Codes ¶ 201 Created

5.2 Get projects

5.2.1 Service layer API

Signature Optional<RepoProject> getShallow(ProjectName projectId);

Optional<RepoProject> get(ProjectName projectId);

Optional<RepoProject> getTree(ProjectName projectId);

Description Gets and existing project. getShallow only retrieves the direct properties
of the project, get also retrieves the packages associated with the project
and getTree retrieves the complete object tree containing packages and
associated artefact records.

Arguments ¶ projectId: The id of the project

Return value The RepoProject instance with associated objects depending on the
variant used.

Exceptions None

5.2.2 REST API

Uri api1/projects/{projectId} ?mode=[shallow|full|tree]

Description Gets the project specified by the resource URI from the database. The
άmodeέ query parameter determines the depth of the retrieved object
tree.

Request Method ¶ GET

Parameters ¶ projectId [URI]: The id of the project

